
Dwaipayan Biswas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1395123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 282-291.	4.0	188
2	Heart Rate Estimation From Wrist-Worn Photoplethysmography: A Review. IEEE Sensors Journal, 2019, 19, 6560-6570.	4.7	157
3	A Low-Complexity ECG Feature Extraction Algorithm for Mobile Healthcare Applications. IEEE Journal of Biomedical and Health Informatics, 2013, 17, 459-469.	6.3	143
4	PP-Net: A Deep Learning Framework for PPG-Based Blood Pressure and Heart Rate Estimation. IEEE Sensors Journal, 2020, 20, 10000-10011.	4.7	109
5	Rehab-Net: Deep Learning Framework for Arm Movement Classification Using Wearable Sensors for Stroke Rehabilitation. IEEE Transactions on Biomedical Engineering, 2019, 66, 3026-3037.	4.2	99
6	Motion Artifact Reduction for Wrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors, 2019, 19, 673.	3.8	89
7	A 769 μW Battery-Powered Single-Chip SoC With BLE for Multi-Modal Vital Sign Monitoring Health Patches. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1506-1517.	4.0	87
8	CNN based approach for activity recognition using a wrist-worn accelerometer. , 2017, 2017, 2438-2441.		85
9	Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification. Human Movement Science, 2015, 40, 59-76.	1.4	82
10	MyoNet: A Transfer-Learning-Based LRCN for Lower Limb Movement Recognition and Knee Joint Angle Prediction for Remote Monitoring of Rehabilitation Progress From sEMG. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8, 1-10.	3.7	55
11	Inter-Cluster Thread-to-Core Mapping and DVFS on Heterogeneous Multi-Cores. IEEE Transactions on Multi-Scale Computing Systems, 2018, 4, 369-382.	2.4	46
12	BiometricNet: Deep Learning based Biometric Identification using Wrist-Worn PPC. , 2018, , .		41
13	Detecting Elementary Arm Movements by Tracking Upper Limb Joint Angles With MARG Sensors. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1088-1099.	6.3	32
14	Binary CorNET: Accelerator for HR Estimation From Wrist-PPG. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 715-726.	4.0	27
15	Wearable Multiple Modality Bio-Signal Recording and Processing on Chip: A Review. IEEE Sensors Journal, 2021, 21, 1108-1123.	4.7	24
16	K-nearest neighbor based methodology for accurate diagnosis of diabetes mellitus. , 2016, , .		22
17	Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist. Physiological Measurement, 2014, 35, 1751-1768.	2.1	20
18	Machine learning for run-time energy optimisation in many-core systems. , 2017, , .		14

2

DWAIPAYAN BISWAS

#	Article	IF	CITATIONS
19	Modified distributed arithmetic based low complexity CNN architecture design methodology. , 2017, , .		12
20	A Compact Chopper Stabilized Δ-ΔΣ Neural Readout IC With Input Impedance Boosting. IEEE Open Journal of the Solid-State Circuits Society, 2021, 1, 67-78.	2.7	12
21	Coordinate Rotation-Based Low Complexity \$K\$ -Means Clustering Architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 1568-1572.	3.1	10
22	Classifying human emotional states using wireless EEG based ERP and functional connectivity measures. , 2016, , .		9
23	Real-time HR Estimation from wrist PPG using Binary LSTMs. , 2019, , .		9
24	Low Complexity Single Channel ICA Architecture Design Methodology for Pervasive Healthcare Applications. , 2016, , .		8
25	On the data analysis for classification of elementary upper limb movements. Biomedical Engineering Letters, 2014, 4, 403-413.	4.1	7
26	A CORDIC-Based Low-Power Statistical Feature Computation Engine for WSN Applications. Circuits, Systems, and Signal Processing, 2015, 34, 4011-4028.	2.0	7
27	Low-Complexity Framework for Movement Classification Using Body-Worn Sensors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25, 1537-1548.	3.1	7
28	Telemedicine system for game-based rehabilitation of stroke patients in the FP7-"StrokeBack" project. , 2014, , .		6
29	Architecture for complex network measures of brain connectivity. , 2017, , .		6
30	ECG compression for remote healthcare systems using selective thresholding based on energy compaction. , 2012, , .		5
31	Real-time arm movement recognition using FPGA. , 2015, , .		5
32	BioTranslator: Inferring R-Peaks from Ambulatory Wrist-Worn PPG Signal. , 2019, 2019, 4241-4245.		5
33	Recognition of Elementary Upper Limb Movements in an Activity of Daily Living Using Data from Wrist Mounted Accelerometers. , 2014, , .		3
34	On the sensor choice and data analysis for classification of elementary upper limb movements. , 2014, , .		3
35	M2DA: A Low-Complex Design Methodology for Convolutional Neural Network Exploiting Data Symmetry and Redundancy. Circuits, Systems, and Signal Processing, 2021, 40, 1542-1567.	2.0	3
36	LSTM-only Model for Low-complexity HR Estimation from Wrist PPG. , 2021, 2021, 1068-1071.		3

3

#	Article	IF	CITATIONS
37	Analysing wireless EEG based functional connectivity measures with respect to change in environmental factors. , 2016, , .		2
38	Body Area Sensing Networks for Remote Health Monitoring. , 2016, , 85-136.		2
39	An Investigation into the Accuracy of Calculating upper Body Joint Angles Using MARG Sensors. Procedia Engineering, 2014, 87, 1330-1333.	1.2	1
40	Evaluations with Patients and Lessons Learned. , 2016, , 295-324.		0
41	Prototyping and Business Potential. , 2016, , 233-293.		0