Elidiane C Rangel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. Materials Science and Engineering C, 2022, 134, 112550.	7.3	12
2	Biofunctional coating of stainless steel surfaces with carvacrol- and eugenol-derived film using atmospheric dielectric barrier discharge plasma: aiming for suppression of biofilm formation and corrosion protection. Journal of Materials Research and Technology, 2022, 18, 2217-2231.	5.8	2
3	Sputtered crystalline TiO2 film drives improved surface properties of titanium-based biomedical implants. Materials Science and Engineering C, 2021, 119, 111638.	7.3	45
4	Organosulphur-modified biochar: An effective green adsorbent for removing metal species in aquatic systems. Surfaces and Interfaces, 2021, 22, 100822.	3.0	10
5	SiOxCyHz-TiO2 Nanocomposite Films Prepared by a Novel PECVD-Sputtering Process. Materials Research, 2021, 24, .	1.3	0
6	Characterization of Plasma-deposited a-C:H:Si:F:N Films. Materials Research, 2021, 24, .	1.3	1
7	Optimizing citric acid protocol to control implantâ€related infections: An <i>in vitro</i> and <i>in situ</i> study. Journal of Periodontal Research, 2021, 56, 558-568.	2.7	7
8	Feasibility of 3D printed Co–Cr alloy for dental prostheses applications. Journal of Alloys and Compounds, 2021, 862, 158171.	5.5	16
9	Atmospheric pressure plasma deposition of eugenol-derived film on metallic biomaterial for suppression of Escherichia coli and Staphylococcus aureus bacterial biofilm. Thin Solid Films, 2021, 734, 138833.	1.8	4
10	Organosilicon films deposited in low-pressure plasma from hexamethyldisiloxane — A review. Vacuum, 2021, 194, 110556.	3.5	27
11	Effect of Plasma Oxidation Treatment on Production of a SiOx/SiOxCyHz Bilayer to Protect Carbon Steel Against Corrosion. Materials Research, 2021, 24, .	1.3	4
12	Surface characterization of different surface treatments associations with plasma and bonding analysis of Y-TZP and the veneering ceramic. Dental Materials, 2021, 37, 1873-1883.	3.5	2
13	Structural and optical properties o plasma-deposited a-C:H:Si:O:N films. Polimeros, 2021, 31, .	0.7	2
14	Role of the Plasma Activation Degree on Densification of Organosilicon Films. Materials, 2020, 13, 25.	2.9	15
15	Improvement of thermoplastic elastomer degradation resistance by low-energy plasma immersion ion bombardment. Materials Chemistry and Physics, 2020, 242, 122467.	4.0	5
16	Synthesis of bioactive glass-based coating by plasma electrolytic oxidation: Untangling a new deposition pathway toward titanium implant surfaces. Journal of Colloid and Interface Science, 2020, 579, 680-698.	9.4	47
17	Thin Film Deposition by Atmospheric Pressure Dielectric Barrier Discharges Containing Eugenol: Discharge and Coating Characterizations. Polymers, 2020, 12, 2692.	4.5	2
18	Atmospheric Pressure Plasma Chemical Vapor Deposition of Carvacrol Thin Films on Stainless Steel to Reduce the Formation of E. Coli and S. Aureus Biofilms. Materials, 2020, 13, 3166.	2.9	7

#	Article	IF	CITATIONS
19	Synthesis of multifunctional chlorhexidine-doped thin films for titanium-based implant materials. Materials Science and Engineering C, 2020, 117, 111289.	7.3	9
20	Analysis of physical properties of facial silicones with different pigmentations submitted to nonthermal plasma treatment and accelerated aging. Journal of Prosthetic Dentistry, 2020, 124, 815.e1-815.e7.	2.8	3
21	Bulk and surface design of MAO-treated Ti-15Zr-15Mo-Ag alloys for potential use as biofunctional implants. Materials Letters, 2020, 269, 127661.	2.6	14
22	Antimicrobial and protective effects of non-thermal plasma treatments on the performance of a resinous liner. Archives of Oral Biology, 2020, 117, 104822.	1.8	6
23	Targeting Pathogenic Biofilms: Newly Developed Superhydrophobic Coating Favors a Host-Compatible Microbial Profile on the Titanium Surface. ACS Applied Materials & Interfaces, 2020, 12, 10118-10129.	8.0	65
24	UV-photofunctionalization of a biomimetic coating for dental implants application. Materials Science and Engineering C, 2020, 110, 110657.	7.3	32
25	Influence of plasma treatment on the physical and chemical properties of sisal fibers and environmental application in adsorption of methylene blue. Materials Today Communications, 2020, 23, 101140.	1.9	13
26	Effects of cold SF6 plasma treatment on a-C:H, polypropylene and polystyrene. Surface and Coatings Technology, 2020, 385, 125398.	4.8	8
27	Effect of nitrogen in the properties of diamond-like carbon (DLC) coating on Ti ₆ Al ₄ V substrate. Materials Research Express, 2020, 7, 065601.	1.6	15
28	Bond strength of lithium disilicate after cleaning methods of the remaining hydrofluoric acid. Journal of Clinical and Experimental Dentistry, 2020, 12, e103-e107.	1.2	3
29	Filmes Finos de Alumina em substratos de alumÃnio 5052 por processo de Oxidação EletrolÃŧica Ã Plasma. The Academic Society Journal, 2020, , 167-180.	0.1	2
30	Plasma Polymer Deposition of Neutral Agent Carvacrol on a Metallic Surface by Using Dielectric Barrier Discharge Plasma in Ambient Air. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 716-725.	0.3	0
31	Co-doped p-type ZnO:Al-N Thin Films Grown by RF-Magnetron Sputtering at Room Temperature. Materials Research, 2020, 23, .	1.3	2
32	Comparison of RF and Pulsed Magnetron Sputtering for the Deposition of AZO Thin Films on PET. Materials Research, 2020, 23, .	1.3	2
33	Surface functionalization of polyvinyl chloride by plasma immersion techniques. Polimeros, 2020, 30, .	0.7	2
34	Functionalization of an experimental Ti-Nb-Zr-Ta alloy with a biomimetic coating produced by plasma electrolytic oxidation. Journal of Alloys and Compounds, 2019, 770, 1038-1048.	5.5	66
35	Al-doping and Properties of AZO Thin Films Grown at Room Temperature: Sputtering Pressure Effect. Materials Research, 2019, 22, .	1.3	19
36	Barrier and mechanical properties of carbon steel coated with SiOx/SiOxCyHz gradual films prepared by PECVD. Surface and Coatings Technology, 2019, 378, 124996.	4.8	13

#	Article	IF	CITATIONS
37	Utilization of gypsum from construction and demolition waste in Portland cement mortar. Ceramica, 2019, 65, 1-6.	0.8	5
38	Can Nonthermal Plasma Improve the Adhesion between Acrylic Resin for Ocular Prostheses and Siliconeâ€Based Relining Material?. Journal of Prosthodontics, 2019, 28, 692-700.	3.7	2
39	Highly thermally conductive dielectric coatings produced by plasma electrolytic oxidation of aluminum. Materials Letters: X, 2019, 3, 100016.	0.7	1
40	Plasma Treatment of Crosslinked Polyethylene Tubes for Improved Adhesion of Water-based Paints. Materials Research, 2019, 22, .	1.3	2
41	Visible-Light-Induced Photocatalytic and Antibacterial Activity of TiO ₂ Codoped with Nitrogen and Bismuth: New Perspectives to Control Implant-Biofilm-Related Diseases. ACS Applied Materials & Interfaces, 2019, 11, 18186-18202.	8.0	95
42	Tailoring the synthesis of tantalum-based thin films for biomedical application: Characterization and biological response. Materials Science and Engineering C, 2019, 101, 111-119.	7.3	22
43	Paleometry as a key tool to deal with paleobiological and astrobiological issues: some contributions and reflections on the Brazilian fossil record. International Journal of Astrobiology, 2019, 18, 575-589.	1.6	5
44	Use of waste foundry sand (WFS) to produce protective coatings on aluminum alloy by plasma electrolytic oxidation. Journal of Cleaner Production, 2019, 222, 584-592.	9.3	10
45	Proteome analysis of the salivary pellicle formed on titanium alloys containing niobium and zirconium. Biofouling, 2019, 35, 173-186.	2.2	22
46	Characterization of amorphous carbon films by PECVD and plasma ion implantation: The role of fluorine and sulfur doping. Materials Chemistry and Physics, 2019, 227, 170-175.	4.0	4
47	Comparison of sludges produced from two different recirculating aquaculture systems (RAS) for recycle and disposal. Aquaculture, 2019, 502, 87-96.	3.5	7
48	Growth of hydroxyapatite coatings on tantalum by plasma electrolytic oxidation in a single step. Surface and Coatings Technology, 2019, 357, 698-705.	4.8	35
49	Use of Industrial Waste to Produce Ceramic Coatings on Metal. European Journal of Sustainable Development (discontinued), 2019, 8, 9.	0.9	0
50	Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm. Dental Materials, 2018, 34, e182-e195.	3.5	66
51	Surface properties and corrosion resistance of SF ₆ plasmaâ€ŧreated polyesterâ€based thermoplastic elastomer. Surface and Interface Analysis, 2018, 50, 13-26.	1.8	2
52	Structural and optical properties of a-C:H:O:Cl and a-C:H:Si:O:Cl films obtained by Plasma Enhanced Chemical Vapor Deposition. Materials Chemistry and Physics, 2018, 214, 277-284.	4.0	0
53	Effect of nonthermal plasma on the properties of a resinous liner submitted to aging. Journal of Prosthetic Dentistry, 2018, 119, 397-403.	2.8	3
54	Zinc oxide surface functionalization and related effects on corrosion resistance of titanium implants. Ceramics International, 2018, 44, 4000-4008.	4.8	56

#	Article	IF	CITATIONS
55	Bacterial Adhesion on Lithium Disilicate Ceramic Surface Exposed to Different Hydrofluoric Solutions. Ceramics, 2018, 1, 145-152.	2.6	0
56	Surface characteristics and optical properties of plasma deposited films on indirect aesthetic restorative dental materials. Surface and Coatings Technology, 2018, 348, 55-63.	4.8	11
57	Characterisation of a new plasma-enhanced film to improve shear bond strength between zirconia and veneering ceramic. Materials Science and Engineering C, 2018, 92, 196-205.	7.3	22
58	Characterization of chemically treated Ti-Zr system alloys for dental implant application. Materials Science and Engineering C, 2018, 92, 849-861.	7.3	54
59	Synthesis of biofunctional coating for a TiZr alloy: Surface, electrochemical, and biological characterizations. Applied Surface Science, 2018, 452, 268-278.	6.1	29
60	EFEITO DA TERMORRETIFICAÇÃO NA QUALIDADE DE COLAGEM DE LÃ,MINAS DE MADEIRA PARA A PRODUÇÃj DE COMPENSADO. Ciencia Florestal, 2018, 28, 274.	f8.3	4
61	Three-species biofilm model onto plasma-treated titanium implant surface. Colloids and Surfaces B: Biointerfaces, 2017, 152, 354-366.	5.0	39
62	Deciphering pyritization-kerogenization gradient for fish soft-tissue preservation. Scientific Reports, 2017, 7, 1468.	3.3	49
63	GEOBIOLOGICAL AND DIAGENETIC INSIGHTS FROM MALVINOKAFFRIC DEVONIAN BIOTA (CHAPADA GROUP,) TJ E 238-249.	TQq1 1 0. 1.3	.784314 rgB 6
64	Surface analysis and shear bond strength of zirconia on resin cements after non-thermal plasma treatment and/or primer application for metallic alloys. Materials Science and Engineering C, 2017, 72, 284-292.	7.3	26
65	Effect of the plasma excitation power on the properties of SiOxCyHz films deposited on AISI 304 steel. Surface and Coatings Technology, 2017, 311, 127-137.	4.8	26
66	Development of binary and ternary titanium alloys for dental implants. Dental Materials, 2017, 33, 1244-1257.	3.5	122
67	Surface characterization of polymers used in fabrication of interim prostheses after treatment with photopolymerized glaze. Materials Science and Engineering C, 2017, 71, 755-763.	7.3	4
68	Morphological and Chemical Effects of Plasma Treatment with Oxygen (O2) and Sulfur Hexafluoride (SF6) on Cellulose Surface. Materials Research, 2017, 20, 842-850.	1.3	21
69	Films Deposited from Reactive Sputtering of Aluminum Acetylacetonate Under Low Energy Ion Bombardment. Materials Research, 2017, 20, 926-936.	1.3	2
70	Effects of Aging on Chlorinated Plasma Polymers. Materials Research, 2017, 20, 862-865.	1.3	1
71	Mg-Containing Hydroxyapatite Coatings Produced by Plasma Electrolytic Oxidation of Titanium. Materials Research, 2017, 20, 891-898.	1.3	3
72	Evaluation of a glaze polishing technique for pigmented denture acrylic resin submitted to thermocycling and disinfection. Journal of International Oral Health, 2017, 9, 213.	0.3	3

#	Article	IF	CITATIONS
73	Study of wettability and optical transparency of pet polymer modified by plasma immersion techniques. Revista Brasileira De Aplicações De Vácuo, 2017, 36, 68.	0.1	2
74	Surface Characterization of a Glass Fiber Post after Nonthermal Plasma Treatment with Hexamethyldisiloxane. Journal of Adhesive Dentistry, 2017, , 525-533.	0.5	3
75	Desenvolvimento e avaliação de uma fonte DC de alta tensão para utilização em sistema de deposição de filmes finos por pulverização catódica. Revista Materia, 2016, 21, 492-500.	0.2	5
76	Micro Abrasive Wear Behaviour Study of Carburization and Ion Plasma Nitriding of P20 Steel. Materials Research, 2016, 19, 686-694.	1.3	13
77	Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications. Biointerphases, 2016, 11, 011013.	1.6	35
78	Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations. Materials Science and Engineering C, 2016, 65, 251-261.	7.3	30
79	Toxicity analysis of ocular prosthesis acrylic resin with or without pigment incorporation in human conjunctival cell line. Toxicology in Vitro, 2016, 36, 180-185.	2.4	8
80	In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze. Materials Science and Engineering C, 2016, 69, 995-1003.	7.3	11
81	Aging effect of atmospheric air on lithium disilicate ceramic after nonthermal plasma treatment. Journal of Prosthetic Dentistry, 2016, 115, 780-787.	2.8	18
82	Effect of nonthermal plasma treatment on the surface of dental resins immersed in artificial saliva. Journal of Polymer Engineering, 2016, 36, 785-793.	1.4	1
83	Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin. Materials Science and Engineering C, 2016, 60, 37-44.	7.3	10
84	Deciphering the preservation of fossil insects: a case study from the Crato Member, Early Cretaceous of Brazil. PeerJ, 2016, 4, e2756.	2.0	41
85	Plasma Treatment to Improve the Surface Properties of Recycled Post onsumer PVC. Plasma Processes and Polymers, 2015, 12, 456-465.	3.0	7
86	Wettability and surface microstructure of polyamide 6 coated with SiOXCYHZ films. Surface and Coatings Technology, 2015, 275, 32-40.	4.8	17
87	Effect of Ion Irradiation on the Structural Properties and Hardness of a-C:H:Si:O:F Films. Journal of Physics: Conference Series, 2015, 591, 012044.	0.4	2
88	Surface degradation of lithium disilicate ceramic after immersion in acid and fluoride solutions. American Journal of Dentistry, 2015, 28, 174-80.	0.1	8
89	Aging Effect of Atmospheric Air on Zirconia Surfaces Treated by Nonthermal Plasma. Journal of Adhesive Dentistry, 2015, 17, 413-9.	0.5	6
90	Cell Adhesion to Plasma-Coated PVC. Scientific World Journal, The, 2014, 2014, 1-9.	2.1	3

#	Article	IF	CITATIONS
91	Corrosion resistance of 2024 aluminum alloy coated with plasma deposited a-C:H:Si:O films. Materials Research, 2014, 17, 1449-1465.	1.3	13
92	Paleometry: A brand new area in Brazilian science. Materials Research, 2014, 17, 1434-1441.	1.3	15
93	Thin films produced on 5052 aluminum alloy by plasma electrolytic oxydation with Red Mud-containing Electrolytes. Materials Research, 2014, 17, 1404-1409.	1.3	3
94	Feasibility of RF Sputtering and PIIID for production of thin films from red mud. Materials Research, 2014, 17, 1316-1323.	1.3	2
95	Innovative low temperature plasma approach for deposition of alumina films. Materials Research, 2014, 17, 1410-1419.	1.3	4
96	Hydroxyapatite coating deposited on grade 4 Titanium by Plasma Electrolytic Oxidation. Materials Research, 2014, 17, 1427-1433.	1.3	6
97	Surface characterization of lithium disilicate ceramic after nonthermal plasma treatment. Journal of Prosthetic Dentistry, 2014, 112, 1156-1163.	2.8	32
98	DNA for nano-bio scale computation of chemical formalisms using Higher Order Logic (HOL) and analysis using an interdisciplinary approach. Materials Research, 2014, 17, 1391-1396.	1.3	0
99	Solidâ€state hydrolysis of postconsumer polyethylene terephthalate after plasma treatment. Journal of Applied Polymer Science, 2013, 127, 1989-1996.	2.6	16
100	<i>In vitro</i> adhesion of <i>Candida glabrata</i> to denture base acrylic resin modified by glowâ€discharge plasma treatment. Mycoses, 2013, 56, 134-144.	4.0	18
101	Mechanical and Tribological Properties of a-C:H:F Thin Films. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2525-2528.	1.8	1
102	Plasma-polymerized acetylene nanofilms modified by nitrogen ion implantation. Applied Surface Science, 2013, 275, 88-93.	6.1	8
103	Structural and optical properties of brominated plasma polymers. Surface and Coatings Technology, 2013, 237, 182-186.	4.8	0
104	Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition. Applied Surface Science, 2013, 280, 474-481.	6.1	18
105	Enhancement of Corrosion Resistance AISI 304 Steel by Plasma Polymerized Thin Films. Materials Research Society Symposia Proceedings, 2013, 1499, 1.	0.1	1
106	Preparation of films from aluminum acetylacetonate by plasma sputtering. Surface and Interface Analysis, 2013, 45, 1113-1118.	1.8	6
107	A Novel Plasma Technique for Surface Treatment: The Plasma Expander. IEEE Transactions on Plasma Science, 2012, 40, 492-496.	1.3	7
108	Diverse Amorphous Carbonaceous Thin Films Obtained by Plasma Enhanced Chemical Vapor Deposition and Plasma Immersion Ion Implantation and Deposition. Physics Procedia, 2012, 32, 48-57.	1.2	5

#	Article	IF	CITATIONS
109	Lubricating coating prepared by PIIID on a forming tool. Journal of Physics: Conference Series, 2012, 370, 012022.	0.4	3
110	Treatment of PVC using an alternative low energy ion bombardment procedure. Applied Surface Science, 2011, 258, 1854-1861.	6.1	28
111	Reduction of Bacterial Adhesion to Biocompatible Polymer Surfaces Via Plasma Processing. Plasma Medicine, 2011, 1, 157-166.	0.6	4
112	Study of superficial properties of titanium treated by PIIID. EPJ Applied Physics, 2011, 56, 24022.	0.7	1
113	Hydrogenated amorphous carbon as protective coating for a forming tool. EPJ Applied Physics, 2011, 56, 24014.	0.7	3
114	Evaluation of fungal adherence to plasmaâ€modified polymethylmethacrylate. Mycoses, 2011, 54, e344-51.	4.0	14
115	Properties of hydrogenated amorphous carbon films deposited by PECVD and modified by SF6 plasma. Surface and Coatings Technology, 2011, 206, 640-645.	4.8	17
116	Development of amorphous carbon protective coatings on poly(vinyl)chloride. Thin Solid Films, 2010, 518, 2750-2756.	1.8	9
117	Effect of the fluorination of DLC film on the corrosion protection of aluminum alloy (AA 5052). Surface and Coatings Technology, 2010, 204, 3022-3028.	4.8	26
118	Evaluation of blood compatibility of plasma deposited heparin-like films and SF6 plasma treated surfaces. Materials Research, 2010, 13, 95-98.	1.3	23
119	Wettability, optical properties and molecular structure of plasma polymerized diethylene glycol dimethyl ether. Journal of Physics: Conference Series, 2009, 167, 012053.	0.4	6
120	Amorphous hydrogenated carbon films treated by SF ₆ plasma. Journal of Physics: Conference Series, 2009, 167, 012054.	0.4	0
121	Plasma enhanced chemical vapor deposition of titanium (IV) ethoxide–oxygen–helium mixtures. Thin Solid Films, 2008, 516, 4940-4945.	1.8	6
122	Effects of nitrogen ion irradiation on plasma polymerized films produced from titanium tetraisopropoxide–oxygen–helium mixtures. Surface and Coatings Technology, 2008, 203, 534-537.	4.8	4
123	Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition. Thin Solid Films, 2006, 515, 1561-1567.	1.8	15
124	Thin polymer films prepared by plasma immersion ion implantation and deposition. Thin Solid Films, 2005, 473, 259-266.	1.8	8
125	Effects of ion beam on nanoindentation characteristics of glassy polymeric carbon surface. Surface and Coatings Technology, 2005, 196, 251-256.	4.8	6
126	Modification of plasma polymer films by ion implantation. Materials Research, 2004, 7, 493-497.	1.3	13

#	Article	IF	CITATIONS
127	Optical and Electrical Properties of Polymerizing Plasmas and Their Correlation with DLC Film Properties. Plasmas and Polymers, 2004, 9, 1-22.	1.5	10
128	Investigations on the Stability of Plasma Modified Silicone Surfaces. Plasmas and Polymers, 2004, 9, 35-48.	1.5	46
129	Hydrophilization of PVC Surfaces by Argon Plasma Immersion Ion Implantation. Plasmas and Polymers, 2003, 8, 1-11.	1.5	20
130	Enhancement of polymer hydrophobicity by SF6 plasma treatment and argon plasma immersion ion implantation. Surface and Interface Analysis, 2003, 35, 179-183.	1.8	56
131	Ion Beam Optimized Mechanical Characteristics of Glassy Polymeric Carbon for Medical Applications. AIP Conference Proceedings, 2003, , .	0.4	0
132	Preparation and characterization of nanocrystalline h-BN films prepared by PECVD method. Brazilian Journal of Physics, 2002, 32, 372-375.	1.4	7
133	Nanoindentation mechanical properties characterization of glassy polymeric carbon treated with ion beam. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 524-529.	1.4	5
134	Argon ion implantation inducing modifications in the properties of benzene plasma polymers. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 700-703.	1.4	5
135	Effect of helium implantation on the properties of plasma polymer films. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 704-707.	1.4	8
136	Nanohardness and contact angle of Si wafers implanted with N and C and Al alloy with N by plasma ion implantation. Surface and Coatings Technology, 2002, 156, 190-194.	4.8	16
137	The Improvement of Thin Polymer Film Properties Through Plasma Immersion Ion Implantation and Deposition Technique. Materials Research Society Symposia Proceedings, 2001, 672, 1.	0.1	0
138	The Influence of Plasma Composition on the Properties of Plasma Treated Biomaterials. Materials Research Society Symposia Proceedings, 2001, 672, 1.	0.1	4
139	The effect of ion bombardment on the properties of TiOx films deposited by a modified ion-assisted PECVD technique. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 721-725.	1.4	6
140	The effect of N+ ion energy on the properties of ion bombarded plasma polymer films. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 594-598.	1.4	3
141	Properties of titanium oxide films obtained by PECVD. Surface and Coatings Technology, 2000, 126, 123-130.	4.8	42
142	Influence of Ar+ ion irradiation on the properties of plasma polymerized acetylene films. Surface and Coatings Technology, 2000, 127, 93-98.	4.8	18
143	Amorphous carbon nitride films irradiated with argon ions. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 420-425.	1.4	4
144	Semi-empirical modeling of the optical gap of amorphous hydrogenated nitrogenated carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2466.	2.1	2

#	Article	IF	CITATIONS
145	Nitrogenation of diamond by glow discharge plasma treatment. Thin Solid Films, 1999, 355-356, 184-188.	1.8	3
146	Influence of nitrogen implantation on the properties of polymer films deposited in benzene glow discharges. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 211-215.	1.4	9
147	Nitrogenated amorphous carbon films deposited from plasmas of methanol-nitrogen mixtures. AIP Conference Proceedings, 1996, , .	0.4	0
148	Amorphous hydrogenated fluorinated carbon films produced by PECVD. Surface and Coatings Technology, 1996, 86-87, 443-448.	4.8	22
149	Optical emission study of reaction mechanisms in the deposition of nitrogenâ€containing amorphous hydrogenated carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1901-1906.	2.1	24
150	Combined Analytical Py-GC/MS, SEM, FTIR and 13C NMR for Investigating the Removal of Trace Metals from Aqueous Solutions by Biochar. Journal of the Brazilian Chemical Society, 0, , .	0.6	1