Patricia Brubaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393406/publications.pdf Version: 2024-02-01

		16411	22764
192	13,794	64	112
papers	citations	h-index	g-index
197	197	197	8299
all docs	docs citations	times ranked	citing authors

PATRICIA RRIIRAKED

#	Article	IF	CITATIONS
1	Induction of intestinal epithelial proliferation by glucagon-like peptide 2 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7911-7916.	3.3	777
2	Glucose intolerance but normal satiety in mice with a null mutation in the glucagon–like peptide 1 receptor gene. Nature Medicine, 1996, 2, 1254-1258.	15.2	710
3	Minireview: Glucagon-Like Peptides Regulate Cell Proliferation and Apoptosis in the Pancreas, Gut, and Central Nervous System. Endocrinology, 2004, 145, 2653-2659.	1.4	486
4	Role of the Vagus Nerve in Mediating Proximal Nutrient-Induced Glucagon-Like Peptide-1 Secretion*. Endocrinology, 1999, 140, 1687-1694.	1.4	393
5	TCF-4 Mediates Cell Type-specific Regulation of Proglucagon Gene Expression by β-Catenin and Glycogen Synthase Kinase-3β. Journal of Biological Chemistry, 2005, 280, 1457-1464.	1.6	359
6	GPR119 Is Essential for Oleoylethanolamide-Induced Glucagon-Like Peptide-1 Secretion From the Intestinal Enteroendocrine L-Cell. Diabetes, 2009, 58, 1058-1066.	0.3	319
7	Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia, 2002, 45, 1263-1273.	2.9	297
8	Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. Journal of Clinical Investigation, 2003, 112, 1550-1560.	3.9	276
9	Peripheral Exendin-4 and Peptide YY3–36 Synergistically Reduce Food Intake through Different Mechanisms in Mice. Endocrinology, 2005, 146, 3748-3756.	1.4	273
10	Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nature Biotechnology, 1997, 15, 673-677.	9.4	243
11	Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line Molecular Endocrinology, 1994, 8, 1646-1655.	3.7	229
12	Role of Leptin in the Regulation of Glucagon-Like Peptide-1 Secretion. Diabetes, 2003, 52, 252-259.	0.3	228
13	Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop Endocrinology, 1993, 133, 233-240.	1.4	225
14	Â-Cell Pdx1 Expression Is Essential for the Glucoregulatory, Proliferative, and Cytoprotective Actions of Glucagon-Like Peptide-1. Diabetes, 2005, 54, 482-491.	0.3	213
15	Role of prohormone convertases in the tissue-specific processing of proglucagon Molecular Endocrinology, 1996, 10, 342-355.	3.7	191
16	Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: role of protein kinase B. Diabetologia, 2005, 48, 1339-1349.	2.9	186
17	Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia, 2004, 47, 478-487.	2.9	184
18	Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Canadian Journal of Physiology and Pharmacology, 2003, 81, 1005-1012.	0.7	183

#	Article	IF	CITATIONS
19	Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology, 1999, 117, 99-105.	0.6	181
20	Glucagon-Like Peptide-2 Increases Intestinal Lipid Absorption and Chylomicron Production via CD36. Gastroenterology, 2009, 137, 997-1005.e4.	0.6	168
21	The Essential Role of Insulin-Like Growth Factor-1 in the Intestinal Tropic Effects of Glucagon-Like Peptide-2 in Mice. Gastroenterology, 2006, 131, 589-605.	0.6	161
22	Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E77-E84.	1.8	154
23	Regulation of Intestinal Proglucagon- Derived Peptide Secretion by Intestinal Regulatory Peptides*. Endocrinology, 1991, 128, 3175-3182.	1.4	149
24	Insulin Regulates Glucagon-Like Peptide-1 Secretion from the Enteroendocrine L Cell. Endocrinology, 2009, 150, 580-591.	1.4	148
25	Regulation of Glucagon-Like Peptide-1 Synthesis and Secretion in the GLUTag Enteroendocrine Cell Line1. Endocrinology, 1998, 139, 4108-4114.	1.4	144
26	Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. Journal of Clinical Investigation, 2000, 105, 955-965.	3.9	142
27	Mechanisms Underlying Metformin-Induced Secretion of Glucagon-Like Peptide-1 from the Intestinal L Cell. Endocrinology, 2011, 152, 4610-4619.	1.4	139
28	Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E460-E465.	1.8	136
29	Monounsaturated Fatty Acid Diets Improve Glycemic Tolerance through Increased Secretion of Glucagon-Like Peptide-1*. Endocrinology, 2001, 142, 1148-1155.	1.4	135
30	Intestinal function in mice with small bowel growth induced by glucagon-like peptide-2. American Journal of Physiology - Endocrinology and Metabolism, 1997, 272, E1050-E1058.	1.8	133
31	Secretion of Proglucagon-Derived Peptides in Response to Intestinal Luminal Nutrients*. Endocrinology, 1991, 128, 3169-3174.	1.4	132
32	Cross Talk between the Insulin and Wnt Signaling Pathways: Evidence from Intestinal Endocrine L Cells. Endocrinology, 2008, 149, 2341-2351.	1.4	127
33	Muscarinic Receptors Control Postprandial Release of Glucagon-Like Peptide-1: In Vivo and in Vitro Studies in Rats. Endocrinology, 2002, 143, 2420-2426.	1.4	124
34	The "cryptic―mechanism of action of glucagon-like peptide-2. American Journal of Physiology - Renal Physiology, 2011, 301, G1-G8.	1.6	124
35	Structure-Function of the Glucagon Receptor Family of G Protein-Coupled Receptors: The Glucagon, GIP, GLP-1, and GLP-2 Receptors. Receptors and Channels, 2002, 8, 179-188.	1.1	122
36	Proglucagon gene expression is regulated by a cyclic AMP-dependent pathway in rat intestine Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3953-3957.	3.3	120

#	Article	IF	CITATIONS
37	Circulating and Tissue Forms of the Intestinal Growth Factor, Glucagon-Like Peptide-2*. Endocrinology, 1997, 138, 4837-4843.	1.4	118
38	Mucosal Adaptation to Enteral Nutrients is Dependent on the Physiologic Actions of Glucagon-Like Peptide-2 in Mice. Gastroenterology, 2005, 128, 1340-1353.	0.6	118
39	Muscarinic Receptors Control Glucagon-Like Peptide 1 Secretion by Human Endocrine L Cells. Endocrinology, 2003, 144, 3244-3250.	1.4	112
40	Identification of glucagon-like peptide 1 (GLP-1) actions essential for glucose homeostasis in mice with disruption of GLP-1 receptor signaling. Diabetes, 1998, 47, 632-639.	0.3	111
41	Minireview: Update on Incretin Biology: Focus on Glucagon-Like Peptide-1. Endocrinology, 2010, 151, 1984-1989.	1.4	105
42	Circadian Secretion of the Intestinal Hormone GLP-1 by the Rodent L Cell. Diabetes, 2014, 63, 3674-3685.	0.3	104
43	Stereospecific effects of fatty acids on proglucagon-derived peptide secretion in fetal rat intestinal cultures Endocrinology, 1995, 136, 5593-5599.	1.4	100
44	Role of the Vagus Nerve in Mediating Proximal Nutrient-Induced Glucagon-Like Peptide-1 Secretion. , 0, .		99
45	Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs. Diabetes, 1999, 48, 1045-1053.	0.3	97
46	Biological Activities of Glucagon-Like Peptide-1 Analogues in Vitro and in Vivo. Biochemistry, 2001, 40, 2860-2869.	1.2	97
47	Ghrelin Is a Novel Regulator of GLP-1 Secretion. Diabetes, 2015, 64, 1513-1521.	0.3	96
48	GLP-1R Agonists Promote Normal and Neoplastic Intestinal Growth through Mechanisms Requiring Fgf7. Cell Metabolism, 2015, 21, 379-391.	7.2	94
49	Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut Endocrinology, 1996, 137, 2383-2388.	1.4	92
50	Human [Gly ²]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis. American Journal of Physiology - Renal Physiology, 1999, 276, G79-G91.	1.6	91
51	Protein Kinase Cζ Is Required for Oleic Acid-Induced Secretion of Glucagon-Like Peptide-1 by Intestinal Endocrine L Cells. Endocrinology, 2007, 148, 1089-1098.	1.4	89
52	Enzymatic- and renal-dependent catabolism of the intestinotropic hormone glucagon-like peptide-2 in rats. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E134-E139.	1.8	86
53	The Glucagon-Like Peptides: Pleiotropic Regulators of Nutrient Homeostasis. Annals of the New York Academy of Sciences, 2006, 1070, 10-26.	1.8	85
54	Circulating levels of glucagon-like peptide-2 in human subjects with inflammatory bowel disease. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R1057-R1063.	0.9	79

#	Article	IF	CITATIONS
55	The Intestinal Epithelial Insulin-Like Growth Factor-1 Receptor Links Glucagon-Like Peptide-2 Action to Gut Barrier Function. Endocrinology, 2014, 155, 370-379.	1.4	79
56	Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E41-E50.	1.8	79
57	Glucagonâ€like Peptideâ€2 and the Regulation ofÂIntestinal Growth and Function. , 2018, 8, 1185-1210.		76
58	Loss of Glucagon-Like Peptide-2–Induced Proliferation Following Intestinal Epithelial Insulin-Like Growth Factor-1–Receptor Deletion. Gastroenterology, 2011, 141, 2166-2175.e7.	0.6	74
59	Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop. , 0, .		73
60	Fetal Rat Intestinal Cells in Monolayer Culture: A Newin VitroSystem to Study the Glucagon-Like Immunoreactive Peptides*. Endocrinology, 1987, 120, 1976-1985.	1.4	72
61	The Xenopus proglucagon gene encodes novel GLP-1-like peptides with insulinotropic properties. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7915-7920.	3.3	72
62	Glucagon-Like Peptide-2 and Common Therapeutics in a Murine Model of Ulcerative Colitis. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 347-354.	1.3	72
63	Ontogeny of the Glucagon-Like Peptide-2 Receptor Axis in the Developing Rat Intestine [™] This work was supported in part by operating grants from the Medical Research Council (to D.J.D. and P.L.B.), the Crohn's and Colitis Foundation of Canada (to P.L.B.), and the Ontario Research and Development Challenge Fund (to D.J.D.). GLP-2 is the subject of a licensing agreement between Toronto General	1.4	71
64	Transcriptional Activation of the Proglucagon Gene by Lithium and β-Catenin in Intestinal Endocrine L Cells. Journal of Biological Chemistry, 2003, 278, 1380-1387.	1.6	71
65	Proglucagon processing in islet and intestinal cell lines. Regulatory Peptides, 1996, 62, 29-35.	1.9	70
66	Control of Glucagon-Like Immunoreactive Peptide Secretion from Fetal Rat Intestinal Cultures*. Endocrinology, 1988, 123, 220-226.	1.4	69
67	Glucagon-Like Peptide-2 Activates β-Catenin Signaling in the Mouse Intestinal Crypt: Role of Insulin-Like Growth Factor-I. Endocrinology, 2008, 149, 291-301.	1.4	64
68	Intestinal response to growth factors administered alone or in combination with human [Gly2]glucagon-like peptide 2. American Journal of Physiology - Renal Physiology, 1997, 273, G1252-G1262.	1.6	62
69	Glucagon-Like Peptide-2 Receptor Activation in the Rat Intestinal Mucosa. Endocrinology, 2003, 144, 4385-4392.	1.4	61
70	Structural Determinants for Activity of Glucagon-like Peptide-2â€. Biochemistry, 2000, 39, 8888-8894.	1.2	60
71	Structure-Function of the Glucagon Receptor Family of G Protein-Coupled Receptors: The Glucagon, GIP, GLP-1, and GLP-2 Receptors. Receptors and Channels, 2002, 8, 179-188.	1.1	55
72	Carcinogenic Effects of Exogenous and Endogenous Glucagon-Like Peptide-2 in Azoxymethane-Treated Mice. Endocrinology, 2009, 150, 4033-4043.	1.4	52

5

#	Article	IF	CITATIONS
73	Mechanism of Action of Glucagon-Like Peptide-2 to Increase IGF-I mRNA in Intestinal Subepithelial Fibroblasts. Endocrinology, 2011, 152, 436-446.	1.4	51
74	High-Fat Diet and Palmitate Alter the Rhythmic Secretion of Glucagon-Like Peptide-1 by the Rodent L-cell. Endocrinology, 2016, 157, 586-599.	1.4	51
75	Developmental and Tissue-Specific Regulation of Proglucagon Gene Expression*. Endocrinology, 1990, 127, 2217-2222.	1.4	49
76	GPR119: "Double-Dipping―for Better Glycemic Control. Endocrinology, 2008, 149, 2035-2037.	1.4	49
77	Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors and Channels, 2002, 8, 179-88.	1.1	49
78	Oral delivery of glucagon-like peptide-1 in a modified polymer preparation normalizes basal glycaemia in diabetic db / db mice. Diabetologia, 2000, 43, 1319-1328.	2.9	46
79	A Glucagon-Like Peptide-1 Receptor Agonist and an Antagonist Modify Macronutrient Selection by Rats. Journal of Nutrition, 2001, 131, 2164-2170.	1.3	46
80	Pax-6 Activates Endogenous Proglucagon Gene Expression in the Rodent Gastrointestinal Epithelium. Diabetes, 2003, 52, 425-433.	0.3	45
81	Incretin-based therapies: mimetics versus protease inhibitors. Trends in Endocrinology and Metabolism, 2007, 18, 240-245.	3.1	44
82	Glucagon and Related Peptides in Fetal Rat Hypothalamus <i>in Vivo</i> and <i>in Vitro</i> *. Endocrinology, 1990, 126, 110-117.	1.4	43
83	Adventure Travel and Type 1 Diabetes: The complicating effects of high altitude. Diabetes Care, 2005, 28, 2563-2572.	4.3	42
84	Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E899-E907.	1.8	40
85	Glucagon-like peptide-2 increases dysplasia in rodent models of colon cancer. American Journal of Physiology - Renal Physiology, 2012, 302, G840-G849.	1.6	40
86	Novel Biological Action of the Dipeptidylpeptidase-IV Inhibitor, Sitagliptin, as a Glucagon-Like Peptide-1 Secretagogue. Endocrinology, 2012, 153, 564-573.	1.4	40
87	Essential Role for Protein Kinase Cζ in Oleic Acid-Induced Glucagon-Like Peptide-1 Secretion in Vivo in the Rat. Endocrinology, 2011, 152, 1244-1252.	1.4	39
88	The Rho Guanosine 5′-Triphosphatase, Cell Division Cycle 42, Is Required for Insulin-Induced Actin Remodeling and Glucagon-Like Peptide-1 Secretion in the Intestinal Endocrine L Cell. Endocrinology, 2009, 150, 5249-5261.	1.4	38
89	Intestinal growth is associated with elevated levels of glucagon-like peptide 2 in diabetic rats. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E815-E820.	1.8	37
90	Tissue-Specific Differences in the Levels of Proglucagon-Derived Peptides in Streptozotocin-Induced Diabetes*. Endocrinology, 1989, 124, 3003-3009.	1.4	36

#	Article	IF	CITATIONS
91	Chronic Exposure to TNFα Impairs Secretion of Glucagon-Like Peptide-1. Endocrinology, 2015, 156, 3950-3960.	1.4	36
92	Proglucagon Processing in an Islet Cell Line: Effects of PC1 Overexpression and PC2 Depletion1. Endocrinology, 1998, 139, 1630-1637.	1.4	35
93	Elevated Glucagon-Like Peptide-1-(7–36)-Amide, but Not Glucose, Associated with Hyperinsulinemic Compensation for Fat Feeding. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5191-5198.	1.8	35
94	Sustained Expression of Exendin-4 Does Not Perturb Glucose Homeostasis, Î ² -Cell Mass, or Food Intake in Metallothionein-Preproexendin Transgenic Mice. Journal of Biological Chemistry, 2000, 275, 34471-34477.	1.6	34
95	Prolonged Gastrointestinal Transit in a Patient with a Glucagon-Like Peptide (GLP)-1- and -2-Producing Neuroendocrine Tumor. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3078-3083.	1.8	34
96	Ghrelin, the proglucagon-derived peptides and peptide YY in nutrient homeostasis. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 705-715.	8.2	34
97	Suppression of circadian secretion of glucagonâ€like peptideâ€1 by the saturated fatty acid, palmitate. Acta Physiologica, 2018, 222, e13007.	1.8	34
98	The core clock gene, Bmal1, and its downstream target, the SNARE regulatory protein secretagogin, are necessary for circadian secretion of glucagon-like peptide-1. Molecular Metabolism, 2020, 31, 124-137.	3.0	34
99	Monounsaturated Fatty Acid Diets Improve Glycemic Tolerance through Increased Secretion of Glucagon-Like Peptide-1. , 0, .		34
100	PKA independent and cell type specific activation of the expression of caudal homeobox gene Cdx-2 by cyclic AMP. FEBS Journal, 2005, 272, 2746-2759.	2.2	33
101	Novel Longâ€Acting GLPâ€2 Analogue, FE 203799 (Apraglutide), Enhances Adaptation and Linear Intestinal Growth in a Neonatal Piglet Model of Short Bowel Syndrome with Total Resection of the lleum. Journal of Parenteral and Enteral Nutrition, 2019, 43, 891-898.	1.3	33
102	Circadian GLP-1 Secretion in Mice Is Dependent on the Intestinal Microbiome for Maintenance of Diurnal Metabolic Homeostasis. Diabetes, 2020, 69, 2589-2602.	0.3	33
103	Role of Phosphatidylinositol 3-KinaseÎ ³ in the Î ² -Cell: Interactions with Glucagon-Like Peptide-1. Endocrinology, 2006, 147, 3318-3325.	1.4	32
104	A Mathematical Model of the Oral Glucose Tolerance Test Illustrating the Effects of the Incretins. Annals of Biomedical Engineering, 2007, 35, 1286-1300.	1.3	32
105	Epac is involved in cAMP-stimulated proglucagon expression and hormone production but not hormone secretion in pancreatic α- and intestinal L-cell lines. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E174-E181.	1.8	32
106	Synthesis and secretion of glucagon-like peptide-1 by fetal rat intestinal cells in culture. Endocrine, 1995, 3, 499-503.	2.2	31
107	Exogenous glucagon-like peptide-2 improves outcomes of intestinal adaptation in a distal-intestinal resection neonatal piglet model of short bowel syndrome. Pediatric Research, 2014, 76, 370-377.	1.1	31
108	Human phosphoserine 31 corticotropin1-39. Isolation and characterization. Journal of Biological Chemistry, 1983, 258, 8108-12.	1.6	31

7

#	Article	IF	CITATIONS
109	The SNARE Protein Syntaxin-1a Plays an Essential Role in Biphasic Exocytosis of the Incretin Hormone Glucagon-Like Peptide 1. Diabetes, 2017, 66, 2327-2338.	0.3	30
110	Regulation of Peptide-YY Synthesis and Secretion in Fetal Rat Intestinal Cultures*. Endocrinology, 1991, 129, 3351-3358.	1.4	29
111	Isolation of ACTH1–39, ACTH1–38 and clip from the calf anterior pituitary. Biochemical and Biophysical Research Communications, 1980, 96, 1441-1448.	1.0	28
112	R-spondin-1 Is a Novel β-Cell Growth Factor and Insulin Secretagogue. Journal of Biological Chemistry, 2010, 285, 21292-21302.	1.6	28
113	Synergy of glucagon-like peptide-2 and epidermal growth factor coadministration on intestinal adaptation in neonatal piglets with short bowel syndrome. American Journal of Physiology - Renal Physiology, 2017, 312, G390-G404.	1.6	27
114	Alterations in proglucagon processing and inhibition of proglucagon gene expression in transgenic mice which contain a chimeric proglucagon-SV40 T antigen gene. Journal of Biological Chemistry, 1992, 267, 20728-33.	1.6	27
115	Truncated and full-length glucagon-like peptide-1 (GLP-1) differentially stimulate intestinal somatostatin release. Endocrine, 1997, 6, 91-95.	2.2	26
116	Foxa3 (HNF-3γ) binds to and activates the rat proglucagon gene promoter but is not essential for proglucagon gene expression. Biochemical Journal, 2002, 366, 633-641.	1.7	26
117	Role of vesicle-associated membrane protein 2 in exocytosis of glucagon-like peptide-1 from the murine intestinal L cell. Diabetologia, 2014, 57, 809-818.	2.9	26
118	Coregulation of Glucagon-Like Peptide-1 Synthesis with Proglucagon and Prohormone Convertase 1 Gene Expression in Enteroendocrine GLUTag Cells**This work was supported by operating grants (to) Tj ETQqO Endocrinology, 2001, 142, 37-42.	0 0 rgBT /	Overlock 10 Tr
119	Life in the crypt: A role for glucagon-like peptide-2?. Molecular and Cellular Endocrinology, 2008, 288, 63-70.	1.6	25
120	Essential Role of Syntaxin-Binding Protein-1 in the Regulation of Glucagon-Like Peptide-1 Secretion. Endocrinology, 2020, 161, .	1.4	25
121	Role of glial cell-line derived neurotropic factor family receptor α2 in the actions of the glucagon-like peptides on the murine intestine. American Journal of Physiology - Renal Physiology, 2007, 293, G461-G468.	1.6	24
122	Glucagonâ€like peptideâ€1: The missing link in the metabolic clock?. Journal of Diabetes Investigation, 2016, 7, 70-75.	1.1	23
123	Biologic Properties and Therapeutic Potential of Glucagonâ€like Peptideâ€2. Journal of Parenteral and Enteral Nutrition, 1999, 23, S98-100.	1.3	22
124	Effects of prolonged exendin-4 administration on hypothalamic-pituitary-adrenal axis activity and water balance. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1105-E1117.	1.8	22
125	Current and potential therapeutic targets of glucagon-like peptide-2. Current Opinion in Pharmacology, 2016, 31, 13-18.	1.7	22
126	Therapeutic potential of the intestinotropic hormone, glucagon-like peptide-2. Annals of Medicine, 2001, 33, 229-235.	1.5	20

#	Article	IF	CITATIONS
127	A Beautiful Cell (or Two or Three?). Endocrinology, 2012, 153, 2945-2948.	1.4	20
128	Diabetes, trekking and high altitude: recognizing and preparing for the risks. Diabetic Medicine, 2015, 32, 1425-1437.	1.2	20
129	Circadian Rhythms and the Gastrointestinal Tract: Relationship to Metabolism and Gut Hormones. Endocrinology, 2020, 161, .	1.4	20
130	IGF Binding Protein-4 is Required for the Growth Effects of Glucagon-Like Peptide-2 in Murine Intestine. Endocrinology, 2015, 156, 429-436.	1.4	18
131	Analysis of Western diet, palmitate and BMAL1 regulation of neuropeptide Y expression in the murine hypothalamus and BMAL1 knockout cell models. Molecular and Cellular Endocrinology, 2020, 507, 110773.	1.6	17
132	The roles of glucagon-like peptide-2 and the intestinal epithelial insulin-like growth factor-1 receptor in regulating microvillus length. Scientific Reports, 2019, 9, 13010.	1.6	15
133	Dietary Cyanidin-3-Glucoside Attenuates High-Fat-Diet–Induced Body-Weight Gain and Impairment of Glucose Tolerance in Mice via Effects on the Hepatic Hormone FGF21. Journal of Nutrition, 2020, 150, 2101-2111.	1.3	15
134	GLP-2, EGF, and the Intestinal Epithelial IGF-1 Receptor Interactions in the Regulation of Crypt Cell Proliferation. Endocrinology, 2020, 161, .	1.4	13
135	Ontogeny of glucagon-like immunoreactive peptides in rat intestine. Regulatory Peptides, 1987, 17, 319-326.	1.9	12
136	Synthesis and secretion of somatostatin-28 and -14 by fetal rat intestinal cells in culture. American Journal of Physiology - Renal Physiology, 1990, 258, G974-G981.	1.6	12
137	L-cell Arntl is required for rhythmic glucagon-like peptide-1 secretion and maintenance of intestinal homeostasis. Molecular Metabolism, 2021, 54, 101340.	3.0	12
138	The intestine and the microbiota in maternal glucose homeostasis during pregnancy. Journal of Endocrinology, 2022, 253, R1-R19.	1.2	11
139	Glucagon-Like Peptide-2 Stimulates S-Phase Entry of Intestinal Lgr5+ Stem Cells. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1829-1842.	2.3	11
140	Molecular and cellular analysis of a neoplastic pancreatic a cell tumor. Cancer, 1990, 65, 1762-1770.	2.0	10
141	Nutrient and Peptide Regulation of Somatostatin-28 Secretion from Intestinal Cultures ¹ . Endocrinology, 1998, 139, 148-155.	1.4	10
142	Role of phosphatidylinositol-3 kinase-γ in the actions of glucagon-like peptide-2 on the murine small intestine. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1599-E1606.	1.8	10
143	Beta-endorphin modulation of the glucoregulatory effects of repeated epinephrine infusion in normal dogs. Diabetes, 1985, 34, 1293-1300.	0.3	10
144	Linking the Gut Microbiome to Metabolism Through Endocrine Hormones. Endocrinology, 2018, 159, 2978-2979.	1.4	9

#	Article	IF	CITATIONS
145	Site-Specific and Temporal Effects of Apraglutide, a Novel Long-Acting Glucagon-Like Peptide-2 Receptor Agonist, on Intestinal Growth in Mice. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 347-352.	1.3	9
146	Effects of Obesogenic Feeding and Free Fatty Acids on Circadian Secretion of Metabolic Hormones: Implications for the Development of Type 2 Diabetes. Cells, 2021, 10, 2297.	1.8	9
147	Glucagon-Like Peptide-2 Requires a Full Complement of Bmi-1 for Its Proliferative Effects in the Murine Small Intestine. Endocrinology, 2016, 157, 2660-2670.	1.4	8
148	On the horizon: trophic peptide growth factors as therapy for neonatal short bowel syndrome. Expert Opinion on Therapeutic Targets, 2016, 20, 819-830.	1.5	8
149	Coregulation of Glucagon-Like Peptide-1 Synthesis with Proglucagon and Prohormone Convertase 1 Gene Expression in Enteroendocrine GLUTag Cells*This work was supported by operating grants (to) Tj ETQq1 1	0.784314	rg & T /Over
150	Failure of chronic hyperinsulinemia to suppress pancreatic glucagon in vivo in the rat. Canadian Journal of Physiology and Pharmacology, 1991, 69, 437-443.	0.7	7
151	Increase in somatostatin to glucagon ratio in islets of alloxan-diabetic dogs: effect of insulin-induced euglycemia. Canadian Journal of Physiology and Pharmacology, 1993, 71, 512-517.	0.7	7
152	Calcitonin gene-related peptide-I preferentially stimulates secretion of somatostatin from intestinal cultures Endocrinology, 1993, 133, 2833-2837.	1.4	7
153	Insulin-like growth factor-binding protein-4 inhibits epithelial growth and proliferation in the rodent intestine. American Journal of Physiology - Renal Physiology, 2018, 315, G206-G219.	1.6	7
154	Nobiletin ameliorates high fat-induced disruptions in rhythmic glucagon-like peptide-1 secretion. Scientific Reports, 2022, 12, 7271.	1.6	7
155	Hormonal and metabolic responses to intracarotid and intrajugular infusion of β-endorphin in normal dogs. Canadian Journal of Physiology and Pharmacology, 1986, 64, 306-310.	0.7	6
156	Elucidating the Biological Roles of Insulin and Its Receptor in Murine Intestinal Growth and Function. Endocrinology, 2017, 158, 2453-2469.	1.4	6
157	Requirement for the intestinal epithelial insulinâ€like growth factorâ€1 receptor in the intestinal responses to glucagonâ€like peptideâ€2 and dietary fat. FASEB Journal, 2020, 34, 6628-6640.	0.2	6
158	Diurnal changes in the murine small intestine are disrupted by obesogenic Western Diet feeding and microbial dysbiosis. Scientific Reports, 2021, 11, 20571.	1.6	6
159	Glucagon-Like Immunoreactive Peptides in a Rat Ileal Epithelial Cell Line (IEC-18). Endocrine Research, 1987, 13, 229-241.	0.6	5
160	Control of Proglucagon-Derived Peptide Synthesis and Secretion in Fetal Rat Hypothalamus. Neuroendocrinology, 1992, 56, 340-347.	1.2	5
161	Glucagon-like peptide 2: an update. Current Opinion in Endocrinology, Diabetes and Obesity, 2005, 12, 63-71.	0.6	5
162	R-spondin1 deficiency in mice improves glycaemic control in association with increased beta cell mass. Diabetologia, 2011, 54, 1726-1734.	2.9	5

#	Article	IF	CITATIONS
163	Quantitative Proteomics of Intestinal Mucosa From Male Mice Lacking Intestinal Epithelial Insulin Receptors. Endocrinology, 2017, 158, 2470-2485.	1.4	5
164	Metabolic homeostasis: itâ \in ${}^{\mathrm{M}}$ s all in the timing. Endocrinology, 2022, 163, .	1.4	5
165	Lack of effect of β-endorphin on basal or glucagon-stimulated hepatic glucose production in vitro. Metabolism: Clinical and Experimental, 1987, 36, 432-437.	1.5	4
166	Mechanism of action of glucagon-like peptide-17–36NH2 in isolated rat pancreatic islets and abrogation of its effects in long-term incubations. Endocrine, 1995, 3, 795-799.	2.2	4
167	R-spondin1 Deficiency Enhances β-Cell Neogenesis in a Murine Model of Diabetes. Pancreas, 2014, 43, 93-102.	0.5	4
168	Gut Hormones Fulfill Their Destiny: From Basic Physiology to the Clinic. Annual Review of Physiology, 2014, 76, 515-517.	5.6	4
169	Glucagon-like Peptides: GLP-1 and GLP-2. , 2003, , 55-62.		4
170	Calcitonin gene-related peptide-I preferentially stimulates secretion of somatostatin from intestinal cultures. , 0, .		4
171	Complementary and antagonistic effects of combined glucagonâ€like peptideâ€2 and glucagonâ€like peptideâ€1 receptor agonist administration on parameters relevant to short bowel syndrome. Journal of Parenteral and Enteral Nutrition, 2022, 46, 1361-1370.	1.3	4
172	From cradle to grave: pancreatic beta-cell mass and glucagon-like peptide-1. Minerva Endocrinologica, 2006, 31, 107-24.	1.7	4
173	Release of GLP-1 into the Circulation. Frontiers in Diabetes, 1997, 13, 65-84.	0.4	3
174	Cellular Specificity of Proexendin-4 Processing in Mammalian Cellsin Vitroandin Vivo. Endocrinology, 2002, 143, 3464-3471.	1.4	3
175	Species-Dependent Mechanisms Regulating Glucose-Dependent GLP-1 Secretion?. Diabetes, 2017, 66, 2063-2065.	0.3	3
176	Beta endorphin modulation of the glucoregulatory effects of repeated epinephrine infusion in alloxan-diabetic and normal dogs. Diabetologia, 1987, 30, 745-754.	2.9	2
177	Inhibition of protein kinase A—Induced glucagon synthesis and secretion by glucose. Metabolism: Clinical and Experimental, 1996, 45, 347-350.	1.5	2
178	In the Shortâ€ŧerm, Milk Fat Globule Epidermal Growth Factorâ€8 Causes Siteâ€specific Intestinal Growth in Resected Piglets. Journal of Pediatric Gastroenterology and Nutrition, 2020, 71, 543-549.	0.9	2
179	Comment on Ussar et al. Regulation of Glucose Uptake and Enteroendocrine Function by the Intestinal Epithelial Insulin Receptor. Diabetes 2017;66:886–896. Diabetes, 2017, 66, e5-e5.	0.3	1
180	Durability of Linear Smallâ€Intestinal Growth Following Treatment Discontinuation of Longâ€Acting Glucagonâ€Like Peptide 2 (GLPâ€2) Analogues. Journal of Parenteral and Enteral Nutrition, 2020, 45, 1466-1474.	1.3	1

#	Article	IF	CITATIONS
181	Proglucagon-Derived Peptides in the Neuroendocrine System. Advances in Experimental Medicine and Biology, 1991, 291, 143-159.	0.8	1
182	Murine GLUTag Cells. , 2015, , 229-238.		1
183	Differential glucocorticoid regulation of glucagon gene expression in cell lines derived from rat and hamster islet cell tumors. Cancer Research, 1991, 51, 1196-201.	0.4	1
184	Role of glutamate in regulating hypothalamic proglucagon-derived peptide secretion in vitro. Life Sciences, 1995, 56, 1325-1331.	2.0	0
185	From Enteroglucagon to the Glucagon-Like Peptides, GLP-1 and GLP-2. Canadian Journal of Diabetes, 2010, 34, 190-192.	0.4	0
186	The Endocrine Society Centennial: Cleavage Matters. Endocrinology, 2016, 157, 4091-4093.	1.4	0
187	The Cardiac Glucagonlike Peptide-1 Receptor: Whither Art Thou?. Endocrinology, 2018, 159, 1842-1843.	1.4	0
188	Why Recycling Matters: Glucagon-Like Peptide-2 and the Regulation of Intestinal Sodium and Fluid Absorption. Digestive Diseases and Sciences, 2020, 65, 3422-3424.	1.1	0
189	Inflaming the Clock: Effects of Interleukin 1β on Circadian Rhythmicity of Pancreatic β Cells. Endocrinology, 2021, 162, .	1.4	0
190	Intestinal Proglucagon-Derived Peptides. , 1999, , 493-514.		0
191	Combined Glucagonâ€like Peptideâ€2 and Epidermal Growth Factor Therapy Maximally Stimulates Adaptation in Neonatal Intestinal Failure without lleum. FASEB Journal, 2015, 29, 265.3.	0.2	0
192	SUN-LB018 Role of BMAL1 in Western Diet-Induced Disruption of Circadian Hypothalamic Feeding Neuropeptides. Journal of the Endocrine Society, 2019, 3, .	0.1	0