Xiaochu Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393374/publications.pdf Version: 2024-02-01

Хилосни Дімс

#	Article	IF	CITATIONS
1	Synthesis and Characterization of Alkyne-Functionalized Photo-Cross-Linkable Polyesters. ACS Omega, 2022, 7, 15540-15546.	1.6	2
2	Citrate Crosslinked Poly(Glycerol Sebacate) with Tunable Elastomeric Properties. Macromolecular Bioscience, 2021, 21, e2000301.	2.1	10
3	Using Solution Electrowriting to Control the Properties of Tubular Fibrous Conduits. ACS Biomaterials Science and Engineering, 2021, 7, 400-407.	2.6	4
4	Azido-Functionalized Polyurethane Designed for Making Tunable Elastomers by Click Chemistry. ACS Biomaterials Science and Engineering, 2020, 6, 852-864.	2.6	5
5	Slow degrading poly(glycerol sebacate) derivatives improve vascular graft remodeling in a rat carotid artery interposition model. Biomaterials, 2020, 257, 120251.	5.7	39
6	Control the Mechanical Properties and Degradation of Poly(Glycerol Sebacate) by Substitution of the Hydroxyl Groups with Palmitates. Macromolecular Bioscience, 2020, 20, e2000101.	2.1	25
7	Imidazoquinoline-Conjugated Degradable Coacervate Conjugate for Local Cancer Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 4993-5000.	2.6	13
8	Three-Dimensional Printing of Poly(glycerol sebacate) Acrylate Scaffolds <i>via</i> Digital Light Processing. ACS Applied Bio Materials, 2020, 3, 7575-7588.	2.3	24
9	Chelation Crosslinking of Biodegradable Elastomers. Advanced Materials, 2020, 32, e2003761.	11.1	32
10	Scale-up synthesis of a polymer designed for protein therapy. European Polymer Journal, 2019, 117, 353-362.	2.6	4
11	A biocompatible betaine-functionalized polycation for coacervation. Soft Matter, 2018, 14, 387-395.	1.2	9
12	A biodegradable synthetic graft for small arteries matches the performance of autologous vein in rat carotid arteries. Biomaterials, 2018, 181, 67-80.	5.7	35
13	Localized Multiâ€Component Delivery Platform Generates Local and Systemic Antiâ€Tumor Immunity. Advanced Functional Materials, 2017, 27, 1604366.	7.8	40
14	Weak bond-based injectable and stimuli responsive hydrogels for biomedical applications. Journal of Materials Chemistry B, 2017, 5, 887-906.	2.9	90
15	Tyramine functionalization of poly(glycerol sebacate) increases the elasticity of the polymer. Journal of Materials Chemistry B, 2017, 5, 6097-6109.	2.9	24
16	A shear-thinning hydrogel that extends inÂvivo bioactivity of FGF2. Biomaterials, 2016, 111, 80-89.	5.7	37
17	Dual physical dynamic bond-based injectable and biodegradable hydrogel for tissue regeneration. Journal of Materials Chemistry B, 2016, 4, 1175-1185.	2.9	34
18	Nitro-Group Functionalization of Dopamine and its Contribution to the Viscoelastic Properties of Catechol-Containing Nanocomposite Hydrogels. Macromolecular Chemistry and Physics, 2015, 216, 1109-1119.	1.1	50

XIAOCHU DING

#	Article	IF	CITATIONS
19	End group polarity and block symmetry effects on cloud point and hydrodynamic diameter of thermoresponsive block copolymers. Journal of Polymer Science Part A, 2015, 53, 2838-2848.	2.5	7
20	Chemical and physical aspects of self-healing materials. Progress in Polymer Science, 2015, 49-50, 34-59.	11.8	375
21	Peptide-Directed Self-Assembly of Functionalized Polymeric Nanoparticles. Part II: Effects of Nanoparticle Composition on Assembly Behavior and Multiple Drug Loading Ability. Macromolecular Bioscience, 2015, 15, 568-582.	2.1	8
22	Recent Developments in Molecularly Imprinted Nanoparticles by Surface Imprinting Techniques. Macromolecular Materials and Engineering, 2014, 299, 268-282.	1.7	114
23	Peptideâ€Directed Selfâ€Assembly of Functionalized Polymeric Nanoparticles Part I: Design and Selfâ€Assembly of Peptide–Copolymer Conjugates into Nanoparticle Fibers and 3D Scaffolds. Macromolecular Bioscience, 2014, 14, 853-871.	2.1	11
24	Fabrication and electrochemical performance of nanofibrous micro-frameworks of α-MnO2. Particuology, 2014, 17, 54-58.	2.0	3
25	Comparing Leaching of Different Copper Oxide Nanoparticles and Ammoniacal Copper Salt from Wood. Macromolecular Materials and Engineering, 2013, 298, 1335-1343.	1.7	14
26	Efficient one-pot synthesis and loading of self-assembled amphiphilic chitosan nanoparticles for low-leaching wood preservation. Carbohydrate Polymers, 2011, 86, 58-64.	5.1	36