
Rodney L Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	[49] Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 1990, 186, 464-478.	0.4	4,778
2	[37] Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 1994, 233, 346-357.	0.4	2,211
3	Methionine residues as endogenous antioxidants in proteins. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15036-15040.	3.3	963
4	Protein Oxidation. Annals of the New York Academy of Sciences, 2000, 899, 191-208.	1.8	892
5	Carbonyl modified proteins in cellular regulation, aging, and disease2,3 2Guest Editor: Earl Stadtman 3This article is part of a series of reviews on "Oxidatively Modified Proteins in Aging and Disease.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002. 32. 790-796.	1.3	580
6	Differential susceptibility of plasma proteins to oxidative modification: Examination by western blot immunoassay. Free Radical Biology and Medicine, 1994, 17, 429-437.	1.3	425
7	Oxidative modification of proteins during aging. Experimental Gerontology, 2001, 36, 1495-1502.	1.2	411
8	Methionine in proteins defends against oxidative stress. FASEB Journal, 2009, 23, 464-472.	0.2	383
9	Methionine oxidation and aging. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1703, 135-140.	1.1	343
10	Methionine residues may protect proteins from critical oxidative damage. Mechanisms of Ageing and Development, 1999, 107, 323-332.	2.2	320
11	Oxidation of Methionine in Proteins: Roles in Antioxidant Defense and Cellular Regulation. IUBMB Life, 2000, 50, 301-307.	1.5	319
12	Oxidation of Methionine Residues of Proteins: Biological Consequences. Antioxidants and Redox Signaling, 2003, 5, 577-582.	2.5	304
13	Small-Molecule Antioxidant Proteome-Shields in Deinococcus radiodurans. PLoS ONE, 2010, 5, e12570.	1.1	278
14	Determination of carbonyl groups in oxidatively modified proteins by reduction with tritiated sodium borohydride. Analytical Biochemistry, 1989, 177, 419-425.	1.1	277
15	Molecular Cloning and Characterization of a Mitochondrial Selenocysteine-containing Thioredoxin Reductase from Rat Liver. Journal of Biological Chemistry, 1999, 274, 4722-4734.	1.6	243
16	Oxidation of either Methionine 351 or Methionine 358 in α1-Antitrypsin Causes Loss of Anti-neutrophil Elastase Activity. Journal of Biological Chemistry, 2000, 275, 27258-27265.	1.6	240
17	Determination of Carbonyl Groups in Oxidized Proteins. , 2000, 99, 15-24.		231
18	Age-Related Decline of Rat Liver Multicatalytic Proteinase Activity and Protection from Oxidative Inactivation by Heat-Shock Protein 90. Archives of Biochemistry and Biophysics, 1996, 331, 232-240.	1.4	214

#	Article	IF	CITATIONS
19	Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nature Cell Biology, 2009, 11, 1241-1246.	4.6	214
20	Methionine oxidation and reduction in proteins. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 901-905.	1.1	213
21	Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Molecular and Cellular Biochemistry, 2002, 234/235, 3-9.	1.4	196
22	Inactivation of Human β-Defensins 2 and 3 by Elastolytic Cathepsins. Journal of Immunology, 2003, 171, 931-937.	0.4	195
23	Oxidation of Methionine in Proteins: Roles in Antioxidant Defense and Cellular Regulation. IUBMB Life, 2000, 50, 301-307.	1.5	178
24	Cathepsin B, L, and S Cleave and Inactivate Secretory Leucoprotease Inhibitor. Journal of Biological Chemistry, 2001, 276, 33345-33352.	1.6	168
25	From The Cover: High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9491-9496.	3.3	151
26	Carbonic Anhydrase III. OXIDATIVE MODIFICATION IN VIVO AND LOSS OF PHOSPHATASE ACTIVITY DURING AGING. Journal of Biological Chemistry, 1995, 270, 14742-14747.	1.6	136
27	Metal-catalyzed oxidation of Escherichia coli glutamine synthetase: Correlation of structural and functional changes. Archives of Biochemistry and Biophysics, 1990, 278, 26-34.	1.4	124
28	Comparison of the Effects of Ozone on the Modification of Amino Acid Residues in Glutamine Synthetase and Bovine Serum Albumin. Journal of Biological Chemistry, 1996, 271, 4177-4182.	1.6	124
29	Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patternsâ~†. Experimental Gerontology, 2000, 35, 167-185.	1.2	121
30	Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB Journal, 2009, 23, 3601-3608.	0.2	121
31	ADP ribosylation of human neutrophil peptide-1 regulates its biological properties. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8231-8235.	3.3	117
32	Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radical Biology and Medicine, 1995, 18, 815-821.	1.3	112
33	Metal-catalyzed Oxidation of α-Synuclein. Journal of Biological Chemistry, 2005, 280, 9678-9690.	1.6	110
34	Low Positioning of Umbilical-Artery Catheters Increases Associated Complications in Newborn Infants. New England Journal of Medicine, 1978, 299, 561-564.	13.9	109
35	Decreased Levels of Secretory Leucoprotease Inhibitor in the <i>Pseudomonas</i> -Infected Cystic Fibrosis Lung Are Due to Neutrophil Elastase Degradation. Journal of Immunology, 2009, 183, 8148-8156.	0.4	109
36	Regulation of HIV-1 Protease Activity through Cysteine Modification. Biochemistry, 1996, 35, 2482-2488.	1.2	106

#	Article	IF	CITATIONS
37	Modification of Cysteine Residues In Vitro and In Vivo Affects the Immunogenicity and Antigenicity of Major Histocompatibility Complex Class I–restricted Viral Determinants. Journal of Experimental Medicine, 1999, 189, 1757-1764.	4.2	105
38	Quantitation of protein on gels and blots by infrared fluorescence of Coomassie blue and Fast Green. Analytical Biochemistry, 2006, 350, 233-238.	1.1	105
39	Pharmacology of furosemide in the premature newborn infant. Journal of Pediatrics, 1980, 97, 139-143.	0.9	103
40	Treatment with a catalytic antioxidant corrects the neurobehavioral defect in ataxia–telangiectasia mice. Free Radical Biology and Medicine, 2004, 36, 938-942.	1.3	88
41	Methionine sulfoxide reductase A is a stereospecific methionine oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10472-10477.	3.3	85
42	Methionine in Proteins: It's Not Just for Protein Initiation Anymore. Neurochemical Research, 2019, 44, 247-257.	1.6	85
43	Ischemia: from acidosis to oxidation. FASEB Journal, 1993, 7, 1242-1246.	0.2	84
44	Derivatization of γ-glutamyl semialdehyde residues in oxidized proteins by fluoresceinamine. Analytical Biochemistry, 1989, 182, 226-232.	1.1	83
45	Oxidation of methionine residues in the prion protein by hydrogen peroxide. Archives of Biochemistry and Biophysics, 2004, 432, 188-195.	1.4	82
46	Modification of Proteins in Endothelial Cell Death during Oxidative Stress. Free Radical Biology and Medicine, 1997, 22, 1277-1282.	1.3	80
47	Copurification of carbamoyl phosphate synthetase and aspartate transcarbamoylase from mouse spleen. Biochemical and Biophysical Research Communications, 1971, 44, 981-988.	1.0	78
48	Modulation of the hydrophobicity of glutamine synthetase by mixedâ€function oxidation. FASEB Journal, 1988, 2, 2591-2595.	0.2	75
49	Elafin, an Elastase-specific Inhibitor, Is Cleaved by Its Cognate Enzyme Neutrophil Elastase in Sputum from Individuals with Cystic Fibrosis. Journal of Biological Chemistry, 2008, 283, 32377-32385.	1.6	75
50	Auranofin disrupts selenium metabolism in Clostridium difficile by forming a stable Au–Se adduct. Journal of Biological Inorganic Chemistry, 2009, 14, 507-519.	1.1	75
51	A Review: Biological and Clinical Aspects of Pyrimidine Metabolism. Pediatric Research, 1974, 8, 724-734.	1.1	74
52	Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Molecular and Cellular Biochemistry, 2002, 234-235, 3-9.	1.4	72
53	Site-Specific Interaction between α-Synuclein and Membranes Probed by NMR-Observed Methionine Oxidation Rates. Journal of the American Chemical Society, 2013, 135, 2943-2946.	6.6	71
54	Carbonic Anhydrase III Is Not Required in the Mouse for Normal Growth, Development, and Life Span. Molecular and Cellular Biology, 2004, 24, 9942-9947.	1.1	64

#	Article	IF	CITATIONS
55	Mixed-function oxidation of histidine residues. Methods in Enzymology, 1984, 107, 370-376.	0.4	62
56	Determination of 2-Oxohistidine by Amino Acid Analysis. Analytical Biochemistry, 1995, 231, 440-446.	1.1	60
57	HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase. Biochemical Journal, 2000, 346, 305-311.	1.7	58
58	Direct detection of potential selenium delivery proteins by using an Escherichia coli strain unable to incorporate selenium from selenite into proteins. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9150-9153.	3.3	56
59	Quantification of Protein Carbonylation. Methods in Molecular Biology, 2013, 965, 265-281.	0.4	54
60	Use of Isosbestic Point Wavelength Shifts to Estimate the Fraction of a Precursor That Is Converted to a Given Product. Analytical Biochemistry, 2000, 287, 329-333.	1.1	52
61	ADP-ribosyltransferase-specific Modification of Human Neutrophil Peptide-1. Journal of Biological Chemistry, 2006, 281, 17054-17060.	1.6	52
62	Iron Regulatory Protein 2 as Iron Sensor. Journal of Biological Chemistry, 2003, 278, 14857-14864.	1.6	49
63	Clearance of Bilirubin from Rat Brain after Reversible Osmotic Opening of the Blood-Brain Barrier. Pediatric Research, 1985, 19, 1040-1043.	1.1	48
64	The role of endogenous heme synthesis and degradation domain cysteines in cellular iron-dependent degradation of IRP2. Blood Cells, Molecules, and Diseases, 2003, 31, 247-255.	0.6	47
65	Proteasomal Degradation of Mutant Superoxide Dismutases Linked to Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2005, 280, 39907-39913.	1.6	47
66	Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α‧ynuclein. Angewandte Chemie - International Edition, 2016, 55, 7374-7378.	7.2	47
67	Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13694-13699.	3.3	46
68	Dual Sites of Protein Initiation Control the Localization and Myristoylation of Methionine Sulfoxide Reductase A. Journal of Biological Chemistry, 2010, 285, 18085-18094.	1.6	44
69	Conversion of carbamoyl phosphate to hydroxyurea. Analytical Biochemistry, 1971, 42, 324-337.	1.1	42
70	Oxidation of the active site of glutamine synthetase: Conversion of arginine-344 to γ-glutamyl semialdehyde. Archives of Biochemistry and Biophysics, 1991, 289, 371-375.	1.4	42
71	ADP-ribosylation of human defensin HNP-1 results in the replacement of the modified arginine with the noncoded amino acid ornithine. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19796-19800.	3.3	42
72	Assessment of Skin Carbonyl Content as a Noninvasive Measure of Biological Age. Archives of Biochemistry and Biophysics, 2002, 397, 430-432.	1.4	39

#	Article	IF	CITATIONS
73	Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1513-H1518.	1.5	38
74	Treatment with the reactive oxygen species scavenger EUK-207 reduces lung damage and increases survival during 1918 influenza virus infection in mice. Free Radical Biology and Medicine, 2014, 67, 235-247.	1.3	38
75	MDP-1: A Novel Eukaryotic Magnesium-Dependent Phosphatase‡. Biochemistry, 2000, 39, 8315-8324.	1.2	37
76	Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-γ2. Experimental Cell Research, 2012, 318, 877-886.	1.2	37
77	Characterization of a Covalent Polysulfane Bridge in Copperâ^'Zinc Superoxide Dismutase,. Biochemistry, 2010, 49, 1191-1198.	1.2	34
78	Lecithin:Cholesterol Acyltransferase Activation by Sulfhydryl-Reactive Small Molecules: Role of Cysteine-31. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 306-318.	1.3	34
79	Quantitation of protein carbonylation by dot blot. Analytical Biochemistry, 2012, 423, 241-245.	1.1	33
80	Effects of aging and hyperoxia on oxidative damage to cytochrome c in the housefly, Musca domestica1. Free Radical Biology and Medicine, 2000, 29, 90-97.	1.3	31
81	Modification of the ADP-ribosyltransferase and NAD Glycohydrolase Activities of a Mammalian Transferase (ADP-ribosyltransferase 5) by Auto-ADP-ribosylation. Journal of Biological Chemistry, 1999, 274, 31797-31803.	1.6	30
82	Carbonic Anhydrase III: The Phosphatase Activity Is Extrinsic. Archives of Biochemistry and Biophysics, 2000, 377, 334-340.	1.4	30
83	A Low pK Cysteine at the Active Site of Mouse Methionine Sulfoxide Reductase A. Journal of Biological Chemistry, 2012, 287, 25596-25601.	1.6	30
84	ldentification of a Heme-sensing Domain in Iron Regulatory Protein 2. Journal of Biological Chemistry, 2004, 279, 45450-45454.	1.6	29
85	Wanted and wanting: Antibody against methionine sulfoxide. Free Radical Biology and Medicine, 2012, 53, 1222-1225.	1.3	29
86	Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A. Free Radical Biology and Medicine, 2013, 61, 257-264.	1.3	29
87	Molecular Determinants of S-Glutathionylation of Carbonic Anhydrase 3. Antioxidants and Redox Signaling, 2005, 7, 849-854.	2.5	28
88	Human immunodeficiency viral protease is catalytically active as a fusion protein: Characterization of the fusion and native enzymes produced in Escherichia coli. Archives of Biochemistry and Biophysics, 1990, 283, 141-149.	1.4	25
89	Numerous Proteins in Mammalian Cells Are Prone to Iron-Dependent Oxidation and Proteasomal Degradation. Developmental Neuroscience, 2002, 24, 114-124.	1.0	24
90	Effects of transgenic methionine sulfoxide reductase A (MsrA) expression on lifespan and age-dependent changes in metabolic function in mice. Redox Biology, 2016, 10, 251-256.	3.9	24

#	Article	IF	CITATIONS
91	Group B streptococcal phospholipid causes pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5087-5090.	3.3	23
92	Oxidative stress causes reversible changes in mitochondrial permeability and structure. Experimental Gerontology, 2010, 45, 596-602.	1.2	23
93	In vitro oxidative inactivation of human presequence protease (hPreP). Free Radical Biology and Medicine, 2012, 53, 2188-2195.	1.3	23
94	MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII. Journal of Clinical Investigation, 2020, 130, 4663-4678.	3.9	23
95	Thiols Mediate Superoxide-dependent NADH Modification of Clyceraldehyde-3-phosphate Dehydrogenase. Journal of Biological Chemistry, 1999, 274, 19525-19531.	1.6	22
96	Pyrimidine Biosynthesis during Development of Rat Cerebellum. Pediatric Research, 1972, 6, 682-686.	1.1	21
97	Detection and Affinity Purification of Oxidant-Sensitive Proteins Using Biotinylated Glutathione Ethyl Ester. Methods in Enzymology, 2002, 353, 101-113.	0.4	21
98	Designing antioxidant peptides. Redox Report, 2014, 19, 80-86.	1.4	21
99	Isoindole Linkages Provide a Pathway for DOPAL-Mediated Cross-Linking of α-Synuclein. Biochemistry, 2018, 57, 1462-1474.	1.2	21
100	Rapid benchtop method of alkaline hydrolysis of proteins. Journal of Chromatography A, 1982, 236, 496-498.	1.8	20
101	Superoxide is the critical driver of DOPAL autoxidation, lysyl adduct formation, and crosslinking of α-synuclein. Biochemical and Biophysical Research Communications, 2017, 487, 281-286.	1.0	19
102	[43] Base hydrolysis and amino acid analysis for phosphotyrosine in proteins. Methods in Enzymology, 1983, 99, 402-405.	0.4	17
103	Labeling of cysteine-containing peptides with 2-nitro-5-thiobenzoic acid. Analytical Biochemistry, 1985, 147, 369-373.	1.1	17
104	Methionine sulfoxide reductase contributes to meeting dietary methionine requirements. Archives of Biochemistry and Biophysics, 2012, 522, 37-43.	1.4	17
105	Thioredoxin converts the Syrian hamster (29-231) recombinant prion protein to an insoluble form. Free Radical Biology and Medicine, 2001, 30, 141-147.	1.3	16
106	Covalent Modification of Proteins by Mixed Function Oxidation. Current Topics in Cellular Regulation, 1985, 27, 305-316.	9.6	16
107	Enhanced proteolytic susceptibility of oxidized proteins. Biochemical Society Transactions, 1987, 15, 816-818.	1.6	15
108	Chemical Modification of Proteins by Reactive Oxygen Species. , 2006, , 1-23.		15

7

#	Article	IF	CITATIONS
109	Deuteration of Escherichia coli Enzyme INtr alters its stability. Archives of Biochemistry and Biophysics, 2011, 507, 332-342.	1.4	15
110	Characterization and Solution Structure of Mouse Myristoylated Methionine Sulfoxide Reductase A. Journal of Biological Chemistry, 2012, 287, 25589-25595.	1.6	15
111	Hemoglobin Hasharon in a Premature Infant with Hemolytic Anemia. Pediatric Research, 1975, 9, 7-11.	1.1	14
112	[24] Reversible oxidation of HIV-2 protease. Methods in Enzymology, 2002, 348, 249-259.	0.4	14
113	Loss of methionine sulfoxide reductases increases resistance to oxidative stress. Free Radical Biology and Medicine, 2019, 145, 374-384.	1.3	14
114	Metal-catalyzed Oxidation of the Werner Syndrome Protein Causes Loss of Catalytic Activities and Impaired Protein-Protein Interactions. Journal of Biological Chemistry, 2007, 282, 36403-36411.	1.6	12
115	Buffer modulation of menadione-induced oxidative stress in <i>Saccharomyces cerevisiae</i> . Redox Report, 2009, 14, 214-220.	1.4	12
116	Transgenic mice overexpressing methionine sulfoxide reductase A: Characterization of embryonic fibroblasts. Free Radical Biology and Medicine, 2010, 49, 641-648.	1.3	12
117	Mechanism of oxidative inactivation of human presequence protease by hydrogen peroxide. Free Radical Biology and Medicine, 2014, 77, 57-63.	1.3	12
118	Myristoylated methionine sulfoxide reductase A is a late endosomal protein. Journal of Biological Chemistry, 2018, 293, 7355-7366.	1.6	12
119	A Methionine Residue Promotes Hyperoxidation of the Catalytic Cysteine of Mouse Methionine Sulfoxide Reductase A. Biochemistry, 2016, 55, 3586-3593.	1.2	11
120	A Difference in Mortality Between Two Strains of Jaundiced Rats. Pediatrics, 1991, 87, 88-93.	1.0	11
121	Mutation of the Adenylylated Tyrosine of Glutamine Synthetase Alters Its Catalytic Properties. Biochemistry, 2005, 44, 9441-9446.	1.2	10
122	Fixation of nitrogen in an electrospray mass spectrometer. Rapid Communications in Mass Spectrometry, 2006, 20, 1828-1830.	0.7	10
123	Identification of amino acid phenylthiohydantoins by multicomponent analysis of ultraviolet spectra. Journal of Chromatography A, 1984, 288, 111-116.	1.8	9
124	Lon protease promotes survival of Escherichia coli during anaerobic glucose starvation. Archives of Microbiology, 2008, 189, 181-185.	1.0	9
125	Iron Regulatory Protein 2 Turnover through a Nonproteasomal Pathway. Journal of Biological Chemistry, 2011, 286, 23698-23707.	1.6	9
126	Toxic Dopamine Metabolite DOPAL Forms an Unexpected Dicatechol Pyrrole Adduct with Lysines of α‧ynuclein. Angewandte Chemie, 2016, 128, 7500-7504.	1.6	9

#	Article	IF	CITATIONS
127	Regulation of the actin-activated MgATPase activity of <i>Acanthamoeba</i> myosin II by phosphorylation of serine 639 in motor domain loop 2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E23-32.	3.3	8
128	Distinct oxidative cleavage and modification of bovine [Cu– Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule. Free Radical Biology and Medicine, 2016, 94, 161-173.	1.3	8
129	Oxidation of Methionine 77 in Calmodulin Alters Mouse Growth and Behavior. Antioxidants, 2018, 7, 140.	2.2	8
130	Nucleotide sequence and structure of the mouse carbonic anhydrase III gene. Gene, 2001, 265, 37-44.	1.0	7
131	Neonatal Jaundice. Acta Paediatrica, International Journal of Paediatrics, 1988, 77, 177-182.	0.7	6
132	Determination of 2-oxohistidine by amino acid analysis. Methods in Enzymology, 1999, 300, 120-124.	0.4	6
133	Nonenzymatic Conversion of ADP-Ribosylated Arginines to Ornithine Alters the Biological Activities of Human Neutrophil Peptide-1. Journal of Immunology, 2014, 193, 6144-6151.	0.4	6
134	Concentrations of serum iron in relation to infection in the neonate. Journal of Pediatrics, 1975, 87, 331-332.	0.9	4
135	Drosophila methionine sulfoxide reductase A (MSRA) lacks methionine oxidase activity. Free Radical Biology and Medicine, 2019, 131, 154-161.	1.3	4
136	Energy homeostasis is a conserved process: Evidence from Paracoccus denitrificans' response to acute changes in energy demand. PLoS ONE, 2021, 16, e0259636.	1.1	3
137	Commentary on "Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death―by D.A. Bota, J.K. Ngo, and K.J.A. Davies. Free Radical Biology and Medicine, 2005, 38, 1445-1446.	1.3	2
138	Even malaria parasites watch their host's diet. Nature Microbiology, 2018, 3, 130-131.	5.9	2
139	Repurposing the Pummerer Rearrangement: Determination of Methionine Sulfoxides in Peptides. ChemBioChem, 2020, 21, 508-516.	1.3	2
140	Redox Pioneer: Professor Sue Goo Rhee. Antioxidants and Redox Signaling, 2021, 34, 1-10.	2.5	2
141	Testing The Hypothesis That "Methionine Residues In Proteins Are Antioxidants― FASEB Journal, 2008, 22, 758.1.	0.2	2
142	Response to Dr. Moskovitz. Free Radical Biology and Medicine, 2013, 56, 236.	1.3	1
143	Regulation of cellular growth: Control of pyrimidine biosynthesis. Pediatric Research, 1971, 5, 418-418.	1.1	0
144	Title is missing!. Journal of Pediatrics, 1977, 90, 859-860.	0.9	0

#	Article	IF	CITATIONS
145	Sperm agglutination and infertility. American Journal of Obstetrics and Gynecology, 1978, 130, 604.	0.7	0
146	Low Positioning of Umbilical-Artery Catheters Increases Associated Complications in Newborn Infants. Obstetrical and Gynecological Survey, 1979, 34, 453-454.	0.2	0
147	Metal catalyzed oxidation of glutamine synthetase occurs at the enzyme's active site. Free Radical Biology and Medicine, 1990, 9, 82.	1.3	Ο
148	MPSA abstracts. The Protein Journal, 1994, 13, 515-543.	1.1	0
149	Earl R. Stadtman. Mechanisms of Ageing and Development, 2010, 131, 1.	2.2	0
150	Spectrophotometric assay for the quantitation of methionine sulfoxide in proteins. FASEB Journal, 2006, 20, LB61.	0.2	0
151	Abstract 226: Mechanism of LCAT Activation by Compound A. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	0
152	Biochemical Characterization of the <i>Drosophila</i> Methionine Sulfoxide Reductase A. FASEB Journal, 2018, 32, 533.96.	0.2	0