
Francesca Riuzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1393189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	S100B's double life: Intracellular regulator and extracellular signal. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1008-1022.	4.1	595
2	RAGE in tissue homeostasis, repair and regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 101-109.	4.1	187
3	S100B Protein, a Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. Cardiovascular Psychiatry and Neurology, 2010, 2010, 1-13.	0.8	136
4	Amphoterin Stimulates Myogenesis and Counteracts the Antimyogenic Factors Basic Fibroblast Growth Factor and S100B via RAGE Binding. Molecular and Cellular Biology, 2004, 24, 4880-4894.	2.3	115
5	The Amphoterin (HMGB1)/Receptor for Advanced Glycation End Products (RAGE) Pair Modulates Myoblast Proliferation, Apoptosis, Adhesiveness, Migration, and Invasiveness. Journal of Biological Chemistry, 2006, 281, 8242-8253.	3.4	105
6	The Danger Signal S100B Integrates Pathogen– and Danger–Sensing Pathways to Restrain Inflammation. PLoS Pathogens, 2011, 7, e1001315.	4.7	85
7	S100B protein in tissue development, repair and regeneration. World Journal of Biological Chemistry, 2013, 4, 1.	4.3	84
8	S100B Inhibits Myogenic Differentiation and Myotube Formation in a RAGE-Independent Manner. Molecular and Cellular Biology, 2003, 23, 4870-4881.	2.3	75
9	RAGE in the pathophysiology of skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1213-1234.	7.3	75
10	HMGB1/RAGE regulates muscle satellite cell homeostasis via p38 MAPK/myogenin-dependent repression of Pax7 transcription. Journal of Cell Science, 2012, 125, 1440-54.	2.0	74
11	HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA. Nature Communications, 2013, 4, 2388.	12.8	69
12	Cellular and molecular mechanisms of sarcopenia: the S100B perspective. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1255-1268.	7.3	64
13	S100B causes apoptosis in a myoblast cell line in a RACE-independent manner. Journal of Cellular Physiology, 2004, 199, 274-283.	4.1	63
14	Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 929-946.	7.3	60
15	RAGE Expression in Rhabdomyosarcoma Cells Results in Myogenic Differentiation and Reduced Proliferation, Migration, Invasiveness, and Tumor Growth. American Journal of Pathology, 2007, 171, 947-961.	3.8	56
16	Glyoxalase 1 sustains the metastatic phenotype of prostate cancer cells via <scp>EMT</scp> control. Journal of Cellular and Molecular Medicine, 2018, 22, 2865-2883.	3.6	53
17	S100B protein regulates myoblast proliferation and differentiation by activating FGFR1 in a bFGF-dependent manner. Journal of Cell Science, 2011, 124, 2389-2400.	2.0	52
18	Human muscle satellite cells show age-related differential expression of S100B protein and RAGE. Age, 2011, 33, 523-541.	3.0	51

Francesca Riuzzi

#	Article	IF	CITATIONS
19	Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients. PLoS ONE, 2011, 6, e27962.	2.5	47
20	S100B Engages RAGE or bFGF/FGFR1 in Myoblasts Depending on Its Own Concentration and Myoblast Density. Implications for Muscle Regeneration. PLoS ONE, 2012, 7, e28700.	2.5	45
21	Hypoxia Promotes Danger-mediated Inflammation via Receptor for Advanced Glycation End Products in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1338-1350.	5.6	39
22	Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite. , 2022, 10, e003725.		39
23	Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-κB/YY1/miR-133 axis and NF-κB/YY1/BMP-7 axis. Cell Death and Differentiation, 2017, 24, 2077-2088.	11.2	38
24	Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Scientific Reports, 2017, 7, 12537.	3.3	37
25	S100B stimulates myoblast proliferation and inhibits myoblast differentiation by independently stimulating ERK1/2 and inhibiting p38 MAPK. Journal of Cellular Physiology, 2006, 207, 461-470.	4.1	36
26	Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sciences, 2021, 272, 119251.	4.3	32
27	S100 proteins in obesity: liaisons dangereuses. Cellular and Molecular Life Sciences, 2020, 77, 129-147.	5.4	31
28	Reductive stress in striated muscle cells. Cellular and Molecular Life Sciences, 2020, 77, 3547-3565.	5.4	31
29	Targeting RAGE as a potential therapeutic approach to Duchenne muscular dystrophy. Human Molecular Genetics, 2018, 27, 3734-3746.	2.9	26
30	Hyperactivated RAGE in Comorbidities as a Risk Factor for Severe COVID-19—The Role of RAGE-RAS Crosstalk. Biomolecules, 2021, 11, 876.	4.0	25
31	Role of CD45 Signaling Pathway in Galactoxylomannan-Induced T Cell Damage. PLoS ONE, 2010, 5, e12720.	2.5	21
32	Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis, 2014, 35, 2382-2392.	2.8	19
33	RAGE signaling deficiency in rhabdomyosarcoma cells causes upregulation of PAX7 and uncontrolled proliferation. Journal of Cell Science, 2014, 127, 1699-1711.	2.0	17
34	Phosphocaveolin-1 Enforces Tumor Growth and Chemoresistance in Rhabdomyosarcoma. PLoS ONE, 2014, 9, e84618.	2.5	17
35	The many faces of S100B protein: when an extracellular factor inactivates its own receptor and activates another one. Italian Journal of Anatomy and Embryology, 2010, 115, 147-51.	0.1	17
36	Do porcine Sertoli cells represent an opportunity for Duchenne muscular dystrophy?. Cell Proliferation, 2019, 52, e12599.	5.3	11

Francesca Riuzzi

#	Article	IF	CITATIONS
37	Causes of elevated serum levels of S100B protein in athletes. European Journal of Applied Physiology, 2013, 113, 819-820.	2.5	8
38	Identification of Withania somnifera-Silybum marianum-Trigonella foenum-graecum Formulation as a Nutritional Supplement to Contrast Muscle Atrophy and Sarcopenia. Nutrients, 2021, 13, 49.	4.1	6
39	Employment of Microencapsulated Sertoli Cells as a New Tool to Treat Duchenne Muscular Dystrophy. Journal of Functional Morphology and Kinesiology, 2017, 2, 47.	2.4	3
40	Sertoli Cells Improve Myogenic Differentiation, Reduce Fibrogenic Markers, and Induce Utrophin Expression in Human DMD Myoblasts. Biomolecules, 2021, 11, 1504.	4.0	2
41	Microencapsulated Sertoli cells sustain myoblast proliferation without affecting the myogenic potential. In vitro data. Data in Brief, 2022, 40, 107744.	1.0	1