Qiu-Yan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/139296/publications.pdf

Version: 2024-02-01

567281 677142 23 815 15 22 citations h-index g-index papers 23 23 23 1300 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An in situ quenching electrochemiluminescence biosensor amplified with aptamer recognition-induced multi-DNA release for sensitive detection of pathogenic bacteria. Biosensors and Bioelectronics, 2022, 196, 113744.	10.1	23
2	A thiadiazolopyridine-functionalized Zr(<scp>iv</scp>)-based metal–organic framework for enhanced photocatalytic synthesis of tetrahydroquinolines under visible light. RSC Advances, 2022, 12, 1638-1644.	3.6	3
3	Molecular engineering of covalent triazine frameworks for highly enhanced photocatalytic aerobic oxidation of sulfides. Journal of Materials Chemistry A, 2022, 10, 12489-12496.	10.3	35
4	Collaboratively boosting charge transfer and CO ₂ chemisorption of SnO ₂ to selectively reduce CO ₂ to HCOOH. Chemical Communications, 2021, 57, 8636-8639.	4.1	9
5	Modular synthesis of 3-substituted isocoumarins <i>via</i> silver-catalyzed aerobic oxidation/ <i>6-endo</i> heterocyclization of <i>ortho</i> alkynylbenzaldehydes. Organic and Biomolecular Chemistry, 2021, 19, 6657-6664.	2.8	8
6	Vinylene-bridged donor–acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light. RSC Advances, 2021, 11, 33653-33660.	3.6	2
7	Supporting a Cu@In ₂ O ₃ coreâ€"shell structure on N-doped graphitic carbon cuboctahedral cages for efficient photocatalytic homo-coupling of terminal alkynes. Journal of Materials Chemistry A, 2021, 9, 24909-24914.	10.3	10
8	Microwave-assisted synthesis of urea-containing zirconium metal–organic frameworks for heterogeneous catalysis of Henry reactions. CrystEngComm, 2019, 21, 1358-1362.	2.6	28
9	Selectively Light-up Detection of Phosgene with an Aggregation-Induced Emission-Based Fluorescent Sensor. ACS Omega, 2019, 4, 22557-22561.	3. 5	24
10	Highly Efficient and Selective Photooxidation of Sulfur Mustard Simulant by a Triazolobenzothiadiazole-Moiety-Functionalized Metal–Organic Framework in Air. Inorganic Chemistry, 2018, 57, 4230-4233.	4.0	50
11	Direct C(sp ²)–H amination of aryl aldehyde-derived hydrazones via visible light promoted photoredox catalysis. RSC Advances, 2017, 7, 25171-25174.	3.6	23
12	A benzothiadiazole-based fluorescent sensor for selective detection of oxalyl chloride and phosgene. Organic Chemistry Frontiers, 2017, 4, 1719-1725.	4.5	77
13	Design and Synthesis of Cu@CuS Yolk–Shell Structures with Enhanced Photocatalytic Activity. Nano-Micro Letters, 2017, 9, 35.	27.0	71
14	Ratiometric Luminescent Detection of Organic Amines Due to the Induced Lactam–Lactim Tautomerization of Organic Linker in a Metal–Organic Framework. ACS Applied Materials & Discrete Linker in a Metal–Organic Framework. ACS Applied Materials & Discrete Linker in a Metal–Organic Framework. ACS Applied Materials & Discrete Linker in a Metal–Organic Framework. ACS Applied Materials & Discrete Linker in a Metal–Organic Framework. ACS Applied Materials & Discrete Linker in a Metal–Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal—Organic Framework. ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Applied Materials & Discrete Linker in a Metal†"Organic Framework" ACS Appl	8.0	77
15	Targeted Delivery of a Mannoseâ€Conjugated BODIPY Photosensitizer by Nanomicelles for Photodynamic Breast Cancer Therapy. Chemistry - A European Journal, 2017, 23, 14307-14315.	3.3	67
16	Benzothiadiazole Conjugated Metalorganic Framework for Organic Aerobic Oxidation Reactions under Visible Light. Acta Chimica Sinica, 2017, 75, 80.	1.4	10
17	AIE-active tetraphenylethene functionalized metal–organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chemical Communications, 2016, 52, 11284-11287.	4.1	145
18	Robust Metal–Organic Framework Containing Benzoselenadiazole for Highly Efficient Aerobic Cross-dehydrogenative Coupling Reactions under Visible Light. Inorganic Chemistry, 2016, 55, 1005-1007.	4.0	71

Qıu-Yan Lı

#	Article	IF	CITATION
19	A diiodo-BODIPY postmodified metal–organic framework for efficient heterogeneous organo-photocatalysis. RSC Advances, 2016, 6, 23995-23999.	3.6	26
20	A urea decorated (3,24)-connected rht-type metal–organic framework exhibiting high gas uptake capability and catalytic activity. CrystEngComm, 2015, 17, 4632-4636.	2.6	33
21	Significant emission enhancement of a bola-amphiphile with salicylaldehyde azine moiety induced by the formation of [2]pseudorotaxane with \hat{l}^3 -cyclodextrin. RSC Advances, 2015, 5, 88176-88180.	3.6	7
22	An rht-type metal–organic framework constructed from an unsymmetrical ligand exhibiting high hydrogen uptake capability. RSC Advances, 2014, 4, 53975-53980.	3.6	15
23	A concise synthesis of 10-benzoyl-3,4-dihydroanthracen-1(2H)-one derivatives catalyzed by TfOH under metal-free conditions. Synthetic Communications, 0, , 1-9.	2.1	1