
Kang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1392807/publications.pdf Version: 2024-02-01

KANC CHENC

#	Article	IF	CITATIONS
1	Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Scientific Reports, 2018, 8, 1616.	3.3	157
2	Studies on self-promoted cure behaviors of hydroxy-containing phthalonitrile model compounds. European Polymer Journal, 2009, 45, 1328-1335.	5.4	109
3	Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ, 2016, 4, e2497.	2.0	105
4	A novel curing agent for phthalonitrile monomers: Curing behaviors and properties of the polymer network. Polymer, 2016, 84, 365-370.	3.8	77
5	Self-promoted phthalimide-containing phthalonitrile resins with sluggish curing process and excellent thermal stability. RSC Advances, 2015, 5, 16199-16206.	3.6	69
6	A novel benzimidazoleâ€containing phthalonitrile monomer with unique polymerization behavior. Journal of Polymer Science Part A, 2012, 50, 4977-4982.	2.3	54
7	Renewable protein-based monomer for thermosets: a case study on phthalonitrile resin. Green Chemistry, 2018, 20, 5158-5168.	9.0	52
8	Systematic study on highly efficient Thermal Synergistic Polymerization effect between alicyclic imide moiety and phthalonitrile: Scope, Properties and Mechanism. Polymer, 2016, 102, 266-280.	3.8	41
9	Synthesis and curing of a novel amino-containing phthalonitrile derivative. Chinese Chemical Letters, 2007, 18, 523-526.	9.0	40
10	Synthesis, characterization and self-promoted cure behaviors of a new phthalonitrile derivative 4-(4-(3, 5-diaminobenzoyl) phenoxy) phthalonitrile. Polymer Bulletin, 2009, 62, 581-591.	3.3	35
11	Preparation of self-promoted hydroxy-containing phthalonitrile resins by an in situ reaction. RSC Advances, 2015, 5, 105038-105046.	3.6	35
12	Study of the curing kinetics of a benzimidazole/phthalonitrile resin system. Thermochimica Acta, 2014, 590, 30-39.	2.7	33
13	Promoting effect of methyne/methylene moiety of bisphenol E/F on phthalonitrile resin curing: Expanding the structural design route of phthalonitrile resin. Polymer, 2020, 210, 123001.	3.8	28
14	Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ, 2017, 5, e3665.	2.0	26
15	Synthesis and characterization of a new imide compound containing phthalonitrile and phenylethynyl end-groups. Designed Monomers and Polymers, 2015, 18, 343-349.	1.6	25
16	A Novel Combined Electromagnetic Treatment on Cemented Carbides for Improved Milling and Mechanical Performances. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4798-4808.	2.2	25
17	Effects of Heating Rate and Sintering Temperature on 316ÂL Stainless Steel Powders Sintered Under Multiphysical Field Coupling. Materials and Manufacturing Processes, 2012, 28, 66-71.	4.7	24
			–

Phthalonitrile-PPO Blends: Cure Behavior and Properties. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

KANG CHENG

#	Article	IF	CITATIONS
19	Obtaining spontaneously beating cardiomyocyte-like cells from adipose-derived stromal vascular fractions cultured on enzyme-crosslinked gelatin hydrogels. Scientific Reports, 2017, 7, 41781.	3.3	18
20	Studies on organosoluble polyimides based on a series of new asymmetric and symmetric dianhydrides: Structure/solubility and thermal property relationships. Macromolecular Research, 2012, 20, 10-20.	2.4	17
21	Novel benzimidazole-mediated phthalonitrile/epoxy binary blends system with synergistic curing behavior and outstanding thermal properties. RSC Advances, 2017, 7, 43978-43986.	3.6	17
22	A new molecular design platform for high-performance polymers from versatile bio-based tyramine: a case study of tyramine-derived phthalonitrile resin. Polymer Chemistry, 2021, 12, 408-422.	3.9	17
23	316ÂL Stainless Steel Powder Densification during the Coupled Multi-Fields Activated Micro-Forming. Materials and Manufacturing Processes, 2013, 28, 183-188.	4.7	16
24	Synthesis and properties of polyimides derived from a new phthalonitrile-containing diamine with high polyaddition reactivity. Designed Monomers and Polymers, 2014, 17, 186-193.	1.6	16
25	Study on the phthalonitrile cured via bio-tyrosine cyclic peptide: Achieving good thermal properties under low post-curing temperature. Polymer Degradation and Stability, 2020, 181, 109289.	5.8	16
26	Degradation of poly(<scp>D,L</scp> â€lactic acid)â€ <i>b</i> â€poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Applied Polymer Science, 2009, 112, 2981-2987.	Tf 50 467 1 2.6	ſd (glycol)― 15
27	Synthesis and thermal polymerization of new polyimides with pendant phthalonitrile units. Polymer Bulletin, 2012, 68, 1879-1888.	3.3	15
28	Densification behavior of copper powder during the coupled multi-physics fields-activated microforming. International Journal of Advanced Manufacturing Technology, 2013, 69, 2651-2657.	3.0	15
29	New model phthalonitrile resin system based on selfâ€promoted curing reaction for exploring the mechanism of radical promotedâ€polymerization effect. Journal of Applied Polymer Science, 2019, 136, 48134.	2.6	14
30	Forming Microgears by Micro-FAST Technology. Journal of Microelectromechanical Systems, 2013, 22, 708-715.	2.5	13
31	Curing kinetics study on highly efficient thermal synergistic polymerization effect between alicyclic imide moiety and phthalonitrile. Thermochimica Acta, 2018, 659, 27-33.	2.7	13
32	Synthesis and Characterization of Highly Organosoluble Polyimides Based on a New Asymmetric Dianhydride. Designed Monomers and Polymers, 2012, 15, 53-62.	1.6	12
33	Regulation of adiposeâ€tissueâ€derived stromal cell orientation and motility in 2D―and 3Dâ€cultures by directâ€current electrical field. Development Growth and Differentiation, 2017, 59, 70-82.	1.5	12
34	Production of high-precision micro metallic components by electroforming process. Materials and Manufacturing Processes, 2017, 32, 1325-1330.	4.7	11
35	Bio-adenine-bridged molecular design approach toward non-covalent functionalized graphene by liquid-phase exfoliation. Journal of Materials Science, 2020, 55, 140-150.	3.7	10
36	Curing kinetic of self-promoted alicyclic-based bisphthalonitrile monomer. Thermochimica Acta, 2020, 683, 178446.	2.7	10

KANG CHENG

#	Article	IF	CITATIONS
37	Characterization of DNA-loaded porous polyethersulfone particles prepared by phase inversion technique. Colloid Journal, 2005, 67, 140-145.	1.3	9
38	Copolymerization modification: improving the processability and thermal properties of phthalonitrile resins with novel comonomers. Polymer International, 2019, 68, 724-734.	3.1	9
39	A new addition thermosetting resin from phthalonitrile functionalized [2.2]paracyclophane. Polymer, 2021, 231, 124123.	3.8	9
40	Route to a Porous Carbon Nanofiber Membrane Containing Fe _{<i>x</i>} C _{<i>y</i>} /Fe by Facile In Situ Ion-Exchange Functionalization of the PAA Carboxyl Group: Exemplified by a Supercapacitor. ACS Applied Energy Materials, 2022, 5, 1580-1594.	5.1	9
41	Study on thermal behaviors of a novel cruciform amide-containing phthalonitrile monomer. Designed Monomers and Polymers, 2015, 18, 620-626.	1.6	8
42	Study on Pyrolysis Behavior of Bio-based adenine containing phthalonitrile resin obtained by powder metallurgy-like process. Polymer Degradation and Stability, 2021, 188, 109569.	5.8	8
43	Seaweed-like Nitrogen-Doped Porous Carbon Superstructures <i>via</i> an Ultrasonic Atomization Ice Template as High-Performance Electrodes in Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6163-6173.	5.1	8
44	Synthesis and Characterization of Novel Polyamides Containing Purine Moiety. Polymer-Plastics Technology and Engineering, 2018, 57, 1325-1333.	1.9	7
45	The retarding effects and structural evolution of a bioâ€based highâ€performance polyimide during thermal imidization. Journal of Applied Polymer Science, 2019, 136, 46953.	2.6	7
46	Study on pyrolysis behaviors of L-tyrosine-based phthalonitrile resin. Polymer Testing, 2020, 86, 106506.	4.8	6
47	Degradation of poly(<scp>D</scp> , <scp>L</scp> â€lactic acid)â€ <i>b</i> â€poly(ethylene glycol) copolymer and poly(<scp>L</scp> â€lactic acid) by electron beam irradiation. Journal of Applied Polymer Science, 2011, 120, 509-517.	2.6	5
48	Effect of heating rate on the densification of NdFeB alloys sintered by an electric field. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 1023-1028.	4.9	5
49	Insights into phthalonitrile/epoxy blends modification system from non-competitive cure system based on alicyclic anhydride. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1561-1571.	3.8	5
50	A New Adenine-Derived Physical Dispersion System for Graphene/Polyimide Composites. Industrial & Engineering Chemistry Research, 2020, 59, 6309-6317.	3.7	5
51	Effects of Heating Rate and Sintering Temperature on Micro Forming of 316L Stainless Steel Powder Under Multifield Coupling. Powder Metallurgy and Metal Ceramics, 2013, 52, 261-270.	0.8	3
52	Significant approaches to promote post-cure reaction of bulky polyimides with pendant phthalonitrile unit. Macromolecular Research, 2014, 22, 1074-1083.	2.4	3
53	A Rare Case of Cardiac Calcified Amorphous Tumor: Multi-Modality Imaging Evaluation. American Journal of Case Reports, 2018, 19, 214-217.	0.8	2
54	Modification of poly(D,L-lactic acid)-co-poly(ethylene glycol) copolymer by low energy electron beam (EB) radiation. E-Polymers, 2010, 10, .	3.0	1

#	Article	IF	CITATIONS
55	Structure optimization and casting simulation of engine trestle based on CAE technology. , 2014, , .		1
56	Preparation of poly{styene-co-4-(4-vinylphenoxy) phthalonitrile} nicrospheres by a new approach of "co-dissolution―and its function development. Macromolecular Research, 2015, 23, 628-635.	2.4	1
57	Synthesis of oligomeric phthalonitrile resins containing imide units and study of the methylene-cyano thermal synergistic polymerization effect. High Performance Polymers, 2022, 34, 728-741.	1.8	1
58	Study of thermal properties of difunctional benzoxazines. E-Polymers, 2009, 9, .	3.0	0