Steingrimur Stefansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1391539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spiral Countercurrent Chromatography Enrichment, Characterization, and Assays of Carbon Nanotube Chiralities for Use in Biosensors. ACS Omega, 2017, 2, 1156-1162.	3.5	2
2	Purification of semiconducting single-walled carbon nanotubes by spiral counter-current chromatography. Journal of Chromatography A, 2017, 1483, 93-100.	3.7	5
3	Multi-Phenotypic subtyping of circulating tumor cells using sequential fluorescent quenching and restaining. Scientific Reports, 2016, 6, 33488.	3.3	40
4	Precision microfilters as an all in one system for multiplex analysis of circulating tumor cells. RSC Advances, 2016, 6, 6405-6414.	3.6	29
5	Cytometric characterization of Circulating Tumor Cells Captured by microfiltration and their correlation to the cellsearch [®] CTC test. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 137-144.	1.5	129
6	High-Throughput Peptide Epitope Mapping Using Carbon Nanotube Field-Effect Transistors. International Journal of Peptides, 2013, 2013, 1-6.	0.7	3
7	Isolation of Low Abundance Proteins and Cells Using Buoyant Glass Microbubble Chromatography. Chromatography Research International, 2013, 2013, 1-6.	0.4	4
8	Rapid Diagnosis of E. Coli using Carbon Nanotube Field Effect Transistor Direct Binding Assay. Materials Research Society Symposia Proceedings, 2012, 1416, 49.	0.1	0
9	Specific Binding of Alzheimer's Aβ Peptide Fibrils to Single-Walled Carbon Nanotubes. Nanomaterials and Nanotechnology, 2012, 2, 11.	3.0	6
10	Targeting Antibodies to Carbon Nanotube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates. Journal of Nanotechnology, 2012, 2012, 1-8.	3.4	6
11	Evaluation of Aromatic Boronic Acids as Ligands for Measuring Diabetes Markers on Carbon Nanotube Field-Effect Transistors. Journal of Nanotechnology, 2012, 2012, 1-6.	3.4	6
12	Common benzothiazole and benzoxazole fluorescent DNA intercalators for studying Alzheimer Al² ₁₋₄₂ and prion amyloid peptides. BioTechniques, 2012, 52, 1-6.	1.8	15
13	Comparison of Radioimmuno and Carbon Nanotube Field-Effect Transistor Assays for Measuring Insulin-Like Growth Factor-1 in a Preclinical Model of Human Breast Cancer. Journal of Nanobiotechnology, 2011, 9, 36.	9.1	14
14	The Contributions of Integrin Affinity and Integrin-Cytoskeletal Engagement in Endothelial and Smooth Muscle Cell Adhesion to Vitronectin. Journal of Biological Chemistry, 2007, 282, 15679-15689.	3.4	29
15	Mutants of Plasminogen Activator Inhibitor-1 Designed to Inhibit Neutrophil Elastase and Cathepsin G Are More Effective in Vivo than Their Endogenous Inhibitors. Journal of Biological Chemistry, 2004, 279, 29981-29987.	3.4	21
16	Old Dogs and New Tricks, Proteases, Inhibitors, and Cell Migration. Science Signaling, 2003, 2003, pe24-pe24.	3.6	36
17	Plasminogen Activator Inhibitor-1 in Tumor Growth, Angiogenesis and Vascular Remodeling. Current Pharmaceutical Design, 2003, 9, 1545-1564.	1.9	155
18	Extracellular Export of Sphingosine Kinase-1 Enzyme. Journal of Biological Chemistry, 2002, 277, 66675.	3.4	269

2

#	Article	lF	CITATIONS
19	Plasminogen Activator Inhibitor-1 Regulates Tumor Growth and Angiogenesis. Journal of Biological Chemistry, 2001, 276, 33964-33968.	3.4	235
20	Endothelial Cells Inhibit Flow-Induced Smooth Muscle Cell Migration. Circulation, 2001, 103, 597-603.	1.6	87
21	Inhibition of Angiogenesis in Vivo by Plasminogen Activator Inhibitor-1. Journal of Biological Chemistry, 2001, 276, 8135-8141.	3.4	149
22	Type 1 Plasminogen Activator Inhibitor Binds to Fibrin via Vitronectin. Journal of Biological Chemistry, 2000, 275, 19788-19794.	3.4	61
23	Targeting of Venom Phospholipases: The Strongly Anticoagulant Phospholipase A2 from Naja nigricollis Venom Binds to Coagulation Factor Xa to Inhibit the Prothrombinase Complex. Archives of Biochemistry and Biophysics, 1999, 369, 107-113.	3.0	62
24	Beyond Fibrinolysis: The Role of Plasminogen Activator Inhibitor-1 and Vitronectin in Vascular Wound Healing. Trends in Cardiovascular Medicine, 1998, 8, 175-180.	4.9	27
25	Novel approaches to thrombolysis based on modulation of endogenous fibrinolysis. Behavioural Pharmacology, 1998, 9, 99???104.	1.7	0
26	Novel approaches to thrombolysis based on modulation of endogenous fibrinolysis. Coronary Artery Disease, 1998, 9, 99-104.	0.7	4
27	Plasminogen Activator Inhibitor-1 Contains a Cryptic High Affinity Binding Site for the Low Density Lipoprotein Receptor-related Protein. Journal of Biological Chemistry, 1998, 273, 6358-6366.	3.4	112
28	Neuroserpin, a Brain-associated Inhibitor of Tissue Plasminogen Activator Is Localized Primarily in Neurons. Journal of Biological Chemistry, 1997, 272, 33062-33067.	3.4	192
29	Characterization of the Binding of Different Conformational Forms of Plasminogen Activator Inhibitor-1 to Vitronectin. Journal of Biological Chemistry, 1997, 272, 7676-7680.	3.4	105
30	56 Neurosepin, a specific brain-associated inhibitor of tissue plasminogen activator (tPA). Fibrinolysis and Proteolysis, 1997, 11, 16.	1.1	0
31	The serpin PAI-1 inhibits cell migration by blocking integrin αvβ3 binding to vitronectin. Nature, 1996, 383, 441-443.	27.8	658
32	Plasminogen Activator Inhibitor-1 and Vitronectin Promote the Cellular Clearance of Thrombin by Low Density Lipoprotein Receptor-related Proteins 1 and 2. Journal of Biological Chemistry, 1996, 271, 8215-8220.	3.4	65
33	Glycoprotein 330/Low Density Lipoprotein Receptor-related Protein-2 Mediates Endocytosis of Low Density Lipoproteins via Interaction with Apolipoprotein B100. Journal of Biological Chemistry, 1995, 270, 19417-19421.	3.4	90
34	Identification of Glycoprotein 330 as an Endocytic Receptor for Apolipoprotein J/Clusterin. Journal of Biological Chemistry, 1995, 270, 13070-13075.	3.4	187
35	Native TIMPâ€free 70 kDa progelatinase (MMPâ€2) secreted at elevated levels by RSV transformed fibroblasts. Journal of Cellular Physiology, 1994, 161, 419-428.	4.1	11
36	An Overview of the Structure and Function of Glycoprotein 330, a Receptor Related to the ?2-Macroglobulin Receptor. Annals of the New York Academy of Sciences, 1994, 737, 114-123.	3.8	43

#	Article	IF	CITATIONS
37	The basic phospholipase A2 from Naja nigricollis venom inhibits the prothrombinase complex by a novel nonenzymic mechanism. Biochemistry, 1990, 29, 7742-7746.	2.5	74
38	The inhibition of clotting complexes of the extrinsic coagulation cascade by the phospholipase A2 isoenzymes from venom. Thrombosis Research, 1989, 55, 481-491.	1.7	50