
Ce-Hui Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1391104/publications.pdf Version: 2024-02-01

CE-HULMO

#	Article	lF	CITATIONS
1	The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review. Science of the Total Environment, 2008, 389, 209-224.	8.0	281
2	Soil contamination and sources of phthalates and its health risk in China: A review. Environmental Research, 2018, 164, 417-429.	7.5	239
3	Distribution and risk assessment of quinolone antibiotics in the soils from organic vegetable farms of a subtropical city, Southern China. Science of the Total Environment, 2014, 487, 399-406.	8.0	111
4	Variations in phthalate ester (PAE) accumulation and their formation mechanism in Chinese flowering cabbage (Brassica parachinensis L.) cultivars grown on PAE-contaminated soils. Environmental Pollution, 2015, 206, 95-103.	7.5	101
5	Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Science of the Total Environment, 2016, 562, 170-178.	8.0	95
6	Occurrence of priority organic pollutants in the fertilizers, China. Journal of Hazardous Materials, 2008, 152, 1208-1213.	12.4	90
7	Polycyclic Aromatic Hydrocarbons and Phthalic Acid Esters in Vegetables from Nine Farms of the Pearl River Delta, South China. Archives of Environmental Contamination and Toxicology, 2009, 56, 181-189.	4.1	80
8	Novel insights into anoxic/aerobic1/aerobic2 biological fluidized-bed system for coke wastewater treatment by fluorescence excitation–emission matrix spectra coupled with parallel factor analysis. Chemosphere, 2014, 113, 158-164.	8.2	70
9	High ecological and human health risks from microcystins in vegetable fields in southern China. Environment International, 2019, 133, 105142.	10.0	67
10	Analysis of Trace Microcystins in Vegetables Using Solid-Phase Extraction Followed by High Performance Liquid Chromatography Triple-Quadrupole Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 11831-11839.	5.2	54
11	Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 2015, 116, 50-58.	6.0	49
12	Genotypic variation and mechanism in uptake and translocation of perfluorooctanoic acid (PFOA) in lettuce (Lactuca sativa L.) cultivars grown in PFOA-polluted soils. Science of the Total Environment, 2018, 636, 999-1008.	8.0	45
13	Sorption Mechanism, Kinetics, and Isotherms of Di- <i>n</i> butyl Phthalate to Different Soil Particle-Size Fractions. Journal of Agricultural and Food Chemistry, 2019, 67, 4734-4745.	5.2	45
14	Mechanism and Implication of the Sorption of Perfluorooctanoic Acid by Varying Soil Size Fractions. Journal of Agricultural and Food Chemistry, 2018, 66, 11569-11579.	5.2	43
15	Oxalic Acid in Root Exudates Enhances Accumulation of Perfluorooctanoic Acid in Lettuce. Environmental Science & Technology, 2020, 54, 13046-13055.	10.0	42
16	Enhanced dissipation of DEHP in soil and simultaneously reduced bioaccumulation of DEHP in vegetable using bioaugmentation with exogenous bacteria. Biology and Fertility of Soils, 2017, 53, 663-675.	4.3	40
17	Rice root exudates enhance desorption and bioavailability of phthalic acid esters (PAEs) in soil associating with cultivar variation in PAE accumulation. Environmental Research, 2020, 186, 109611.	7.5	40
18	Functional genomic analysis of phthalate acid ester (PAE) catabolism genes in the versatile PAE-mineralising bacterium Rhodococcus sp. 2G. Science of the Total Environment, 2018, 640-641, 646-652.	8.0	38

СЕ-НИІ МО

#	Article	IF	CITATIONS
19	Regulation Network of Sucrose Metabolism in Response to Trivalent and Hexavalent Chromium in <i>Oryza sativa</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9738-9748.	5.2	36
20	Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments. Science of the Total Environment, 2020, 743, 140755.	8.0	33
21	Variety-Selective Rhizospheric Activation, Uptake, and Subcellular Distribution of Perfluorooctanesulfonate (PFOS) in Lettuce (<i>Lactuca sativa</i> L.). Environmental Science & Technology, 2021, 55, 8730-8741.	10.0	33
22	Variation in accumulation, transport, and distribution of phthalic acid esters (PAEs) in soil columns grown with low- and high-PAE accumulating rice cultivars. Environmental Science and Pollution Research, 2018, 25, 17768-17780.	5.3	32
23	Potential of different species for use in removal of DDT from the contaminated soils. Chemosphere, 2008, 73, 120-125.	8.2	30
24	Variation in accumulation and translocation of di-n-butyl phthalate (DBP) among rice (Oryza sativa L.) genotypes and selection of cultivars for low DBP exposure. Environmental Science and Pollution Research, 2017, 24, 7298-7309.	5.3	30
25	Determination of Trace Perfluoroalkyl Carboxylic Acids in Edible Crop Matrices: Matrix Effect and Method Development. Journal of Agricultural and Food Chemistry, 2017, 65, 8763-8772.	5.2	29
26	Bioaugmentation of Exogenous Strain <i>Rhodococcus</i> sp. 2G Can Efficiently Mitigate Di(2-ethylhexyl) Phthalate Contamination to Vegetable Cultivation. Journal of Agricultural and Food Chemistry, 2019, 67, 6940-6949.	5.2	29
27	Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view. Journal of Hazardous Materials, 2020, 391, 122211.	12.4	28
28	Intraspecific variability of ciprofloxacin accumulation, tolerance, and metabolism in Chinese flowering cabbage (Brassica parachinensis). Journal of Hazardous Materials, 2018, 349, 252-261.	12.4	27
29	Sorption kinetics, isotherms, and mechanism of aniline aerofloat to agricultural soils with various physicochemical properties. Ecotoxicology and Environmental Safety, 2018, 154, 84-91.	6.0	27
30	Effects of rice straw biochar on sorption and desorption of di-n-butyl phthalate in different soil particle-size fractions. Science of the Total Environment, 2020, 702, 134878.	8.0	27
31	Cultivar-Dependent Accumulation and Translocation of Perfluorooctanesulfonate among Lettuce (Lactuca sativa L.) Cultivars Grown on Perfluorooctanesulfonate-Contaminated Soil. Journal of Agricultural and Food Chemistry, 2018, 66, 13096-13106.	5.2	25
32	Physiological differences in response to di-n-butyl phthalate (DBP) exposure between low- and high-DBP accumulating cultivars of Chinese flowering cabbage (Brassica parachinensis L.). Environmental Pollution, 2016, 208, 840-849.	7.5	24
33	Variations in microbial community and di-(2-ethylhexyl) phthalate (DEHP) dissipation in different rhizospheric compartments between low- and high-DEHP accumulating cultivars of rice (Oryza sativa) Tj ETQq1 1	0 678 4314	rg&T /Overla
34	Analysis of Trace Quaternary Ammonium Compounds (QACs) in Vegetables Using Ultrasonic-Assisted Extraction and Gas Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2015, 63, 6689-6697.	5.2	22
35	Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils. Science of the Total Environment, 2016, 560-561, 197-203.	8.0	21
36	Research Progresses of Determination of Perfluorinated Compounds in Environmental Water and Solid Samples. Chinese Journal of Analytical Chemistry, 2017, 45, 601-610.	1.7	20

СЕ-Ниі Мо

#	Article	IF	CITATIONS
37	Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms. Science of the Total Environment, 2021, 763, 143028.	8.0	20
38	Improving yield and quality of vegetable grown in PAEs-contaminated soils by using novel bioorganic fertilizer. Science of the Total Environment, 2020, 739, 139883.	8.0	17
39	Global Picture of Protein Regulation in Response to Dibutyl Phthalate (DBP) Stress of Two <i>Brassica parachinensis</i> Cultivars Differing in DBP Accumulation. Journal of Agricultural and Food Chemistry, 2018, 66, 4768-4779.	5.2	15
40	Food Safety Concerns: Crop Breeding as a Potential Strategy to Address Issues Associated with the Recently Lowered Reference Doses for Perfluorooctanoic Acid and Perfluorooctane sulfonate. Journal of Agricultural and Food Chemistry, 2020, 68, 48-58.	5.2	15
41	Toxicological effects of microcystin-LR on earthworm (Eisenia fetida) in soil. Biology and Fertility of Soils, 2017, 53, 849-860.	4.3	14
42	Differences in Root Physiological and Proteomic Responses to Dibutyl Phthalate Exposure between Low- and High-DBP-Accumulation Cultivars of <i>Brassica parachinensis</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 13541-13551.	5.2	13
43	Dynamics, thermodynamics, and mechanism of perfluorooctane sulfonate (PFOS) sorption to various soil particle-size fractions of paddy soil. Ecotoxicology and Environmental Safety, 2020, 206, 111105.	6.0	13
44	Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates. Science of the Total Environment, 2022, 806, 150310.	8.0	13
45	Uptake pathways of phthalates (PAEs) into Chinese flowering cabbage grown in plastic greenhouses and lowering PAE accumulation by spraying PAE-degrading bacterial strain. Science of the Total Environment, 2022, 815, 152854.	8.0	13
46	Sequential dynamic artificial neural network modeling of a full-scale coking wastewater treatment plant with fluidized bed reactors. Environmental Science and Pollution Research, 2015, 22, 15910-15919.	5.3	12
47	Low-molecular-weight organic acids correlate with cultivar variation in ciprofloxacin accumulation in Brassica parachinensis L Scientific Reports, 2017, 7, 10301.	3.3	12
48	Mechanistic insight into esterase-catalyzed hydrolysis of phthalate esters (PAEs) based on integrated multi-spectroscopic analyses and docking simulation. Journal of Hazardous Materials, 2021, 408, 124901.	12.4	12
49	A Robust Method for Routine Analysis of Perfluorooctane Sulfonate (PFOS) and Perfluorohexane Sulfonate (PFHxS) in Various Edible Crop Matrices. Food Analytical Methods, 2017, 10, 2518-2528.	2.6	9
50	Nitrate supply decreases uptake and accumulation of ciprofloxacin in Brassica parachinensis. Journal of Hazardous Materials, 2021, 403, 123803.	12.4	6
51	Role and possible mechanisms of earthworm Eisenia fetida in the elimination of microcystin-LR in soil. Geoderma, 2021, 392, 114980.	5.1	5
52	Sorption of microcystin-RR onto surface soils: Characteristics and influencing factors. Journal of Hazardous Materials, 2022, 431, 128571.	12.4	5
53	A Visual Leaf Zymography Technique for the <i>In Situ</i> Examination of Plant Enzyme Activity under the Stress of Environmental Pollution. Journal of Agricultural and Food Chemistry, 2020, 68, 14015-14024.	5.2	4
54	Variant-Specific Adsorption, Desorption, and Dissipation of Microcystin Toxins in Surface Soil. Journal of Agricultural and Food Chemistry, 2021, 69, 11825-11834.	5.2	4