Joseph A Fraietta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1389618/publications.pdf

Version: 2024-02-01

47 7,235 25
papers citations h-index

50 50 50 8155
all docs docs citations times ranked citing authors

44

g-index

#	Article	IF	CITATIONS
1	Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 2022, 602, 503-509.	27.8	369
2	Synthetic Biology-based Optimization of T cell Immunotherapies for Cancer. Current Opinion in Biomedical Engineering, 2022, 22, 100372.	3.4	0
3	PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nature Medicine, 2022, 28, 724-734.	30.7	171
4	Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Molecular Cancer, 2022, 21, 78.	19.2	88
5	A phase I trial of cyclosporine for hospitalized patients with COVID-19. JCI Insight, 2022, 7, .	5.0	8
6	Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nature Cancer, 2021, 2, 83-97.	13.2	56
7	Autologous CD4ÂT Lymphocytes Modified with a Tat-Dependent, Virus-Specific Endoribonuclease Gene in HIV-Infected Individuals. Molecular Therapy, 2021, 29, 626-635.	8.2	3
8	Adoptive Cellular Therapy for Solid Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2021, 41, 57-65.	3.8	10
9	BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. Journal of Clinical Investigation, 2021, 131, .	8.2	45
10	BETting on BRD4 inhibition to combat adaptive resistance to CAR TÂcell therapy in glioblastoma. Molecular Therapy, 2021, 29, 2896-2897.	8.2	0
11	Decade-Long Remissions of Leukemia Sustained By the Persistence of Activated CD4+ CAR T-Cells. Blood, 2021, 138, 166-166.	1.4	2
12	First Trial of CRISPR-Edited T cells in Lung Cancer. Trends in Molecular Medicine, 2020, 26, 713-715.	6.7	20
13	CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367, .	12.6	872
14	Joint profiling of chromatin accessibility and CAR-T integration site analysis at population and single-cell levels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5442-5452.	7.1	34
15	Clinical practice: chimeric antigen receptor (CAR) T cells: a major breakthrough in the battle against cancer. Clinical and Experimental Medicine, 2020, 20, 469-480.	3.6	8
16	A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight, 2020, 5, .	5.0	56
17	Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. Journal of Clinical Investigation, 2020, 130, 6317-6324.	8.2	66
18	Hypogammaglobulinemia and Infection Risk in Chronic Lymphocytic Leukemia (CLL) Patients Treated with CD19-Directed Chimeric Antigen Receptor T (CAR-T) Cells. Blood, 2020, 136, 30-32.	1.4	4

#	Article	IF	Citations
19	An introduction to chimeric antigen receptor (CAR) Tâ€eell immunotherapy for human cancer. American Journal of Hematology, 2019, 94, S3-S9.	4.1	340
20	Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood, 2019, 134, 44-58.	1.4	118
21	CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Human Vaccines and Immunotherapeutics, 2019, 15, 1126-1132.	3.3	42
22	CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. Journal of Clinical Investigation, 2019, 130, 673-685.	8.2	78
23	First-in-Human Assessment of Feasibility and Safety of Multiplexed Genetic Engineering of Autologous T Cells Expressing NY-ESO -1 TCR and CRISPR/Cas9 Gene Edited to Eliminate Endogenous TCR and PD-1 (NYCE T cells) in Advanced Multiple Myeloma (MM) and Sarcoma. Blood, 2019, 134, 49-49.	1.4	10
24	Response to Anti-Bcma CAR T Cell Therapy Correlates with T Cell Exhaustion and Activation Status in T Cells at Baseline in Myeloma. Blood, 2019, 134, 1909-1909.	1.4	4
25	Identification and Validation of Predictive Biomarkers to CD19- and BCMA-Specific CAR T-Cell Responses in CAR T-Cell Precursors. Blood, 2019, 134, 622-622.	1.4	15
26	Toward precision manufacturing of immunogene T-cell therapies. Cytotherapy, 2018, 20, 623-638.	0.7	21
27	Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nature Medicine, 2018, 24, 563-571.	30.7	1,150
28	Biomarkers in chimeric antigen receptor T-cell therapy. Biomarkers in Medicine, 2018, 12, 415-418.	1.4	14
29	CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. Frontiers in Immunology, 2018, 9, 2740.	4.8	58
30	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	30.7	459
31	Dominant-Negative TGF-Î ² Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Molecular Therapy, 2018, 26, 1855-1866.	8.2	406
32	Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 2018, 558, 307-312.	27.8	574
33	Reducing <i>Ex Vivo</i> Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research, 2018, 6, 1100-1109.	3.4	189
34	Ibrutinib treatment improves T cell number and function in CLL patients. Journal of Clinical Investigation, 2017, 127, 3052-3064.	8.2	280
35	Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	1.4	381
36	Phosphatidylinositol 3-Kinase p110δ Isoform Regulates CD8+ T Cell Responses during Acute Viral and Intracellular Bacterial Infections. Journal of Immunology, 2016, 196, 1186-1198.	0.8	24

#	Article	IF	CITATIONS
37	Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity, 2016, 44, 380-390.	14.3	811
38	Rapid Evolution of the CD8+ TCR Repertoire in Neonatal Mice. Journal of Immunology, 2016, 196, 2602-2613.	0.8	25
39	The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Responses against Mantle Cell Lymphoma. Clinical Cancer Research, 2016, 22, 2684-2696.	7.0	157
40	Cars in Leukemia: Relapse with Antigen-Negative Leukemia Originating from a Single B Cell Expressing the Leukemia-Targeting CAR. Blood, 2016, 128, 281-281.	1.4	16
41	Minimally Ex Vivo Manipulated Gene-Modified T Cells Display Enhanced Tumor Control. Blood, 2016, 128, 4549-4549.	1.4	2
42	Biomarkers of Response to Anti-CD19 Chimeric Antigen Receptor (CAR) T-Cell Therapy in Patients with Chronic Lymphocytic Leukemia. Blood, 2016, 128, 57-57.	1.4	18
43	Abasic Phosphorothioate Oligomers Inhibit HIV-1 Reverse Transcription and Block Virus Transmission across Polarized Ectocervical Organ Cultures. Antimicrobial Agents and Chemotherapy, 2014, 58, 7056-7071.	3.2	1
44	Signaling Domain of Chimeric Antigen Receptors Can Reprogram T Cells. Blood, 2014, 124, 551-551.	1.4	0
45	Type I Interferon Upregulates Bak and Contributes to T Cell Loss during Human Immunodeficiency Virus (HIV) Infection. PLoS Pathogens, 2013, 9, e1003658.	4.7	76
46	Phosphorothioate $2\hat{a} \in \mathbb{Z}$ Deoxyribose Oligomers as Microbicides That Inhibit Human Immunodeficiency Virus Type 1 (HIV-1) Infection and Block Toll-Like Receptor 7 (TLR7) and TLR9 Triggering by HIV-1. Antimicrobial Agents and Chemotherapy, 2010, 54, 4064-4073.	3.2	24
47	Genome Editing as a Vehicle to Drive Successful Chimeric Antigen Receptor T Cell Therapies to the Clinic. European Medical Journal (Chelmsford, England), 0, , .	3.0	0