
Pedro Carrasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1389486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chloroplast morphology and pyrenoid ultrastructural analyses reappraise the diversity of the lichen phycobiont genus Trebouxia (Chlorophyta). Algal Research, 2022, 61, 102561.	4.6	16
2	Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	58
3	A genetic approach reveals different modes of action of prefoldins. Plant Physiology, 2021, 187, 1534-1550.	4.8	10
4	Metabolic Profiling and Metabolite Correlation Network Analysis Reveal That Fusarium solani Induces Differential Metabolic Responses in Lotus japonicus and Lotus tenuis against Severe Phosphate Starvation. Journal of Fungi (Basel, Switzerland), 2021, 7, 765.	3.5	7
5	Prefoldins contribute to maintaining the levels of the spliceosome LSM2–8 complex through Hsp90 in Arabidopsis. Nucleic Acids Research, 2020, 48, 6280-6293.	14.5	20
6	Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zoharyi from the Canary Islands. Symbiosis, 2020, 82, 19-34.	2.3	11
7	Spermine Confers Stress Resilience by Modulating Abscisic Acid Biosynthesis and Stress Responses in Arabidopsis Plants. Frontiers in Plant Science, 2019, 10, 972.	3.6	20
8	Interspecific hybridization improves the performance of Lotus spp. under saline stress. Plant Science, 2019, 283, 202-210.	3.6	7
9	A Bacterial Endophyte from Apoplast Fluids Protects Canola Plants from Different Phytopathogens via Antibiosis and Induction of Host Resistance. Phytopathology, 2019, 109, 375-383.	2.2	36
10	The increase of photosynthetic carbon assimilation as a mechanism of adaptation to low temperature in Lotus japonicus. Scientific Reports, 2019, 9, 863.	3.3	23
11	Transcriptome Analysis of PA Gain and Loss of Function Mutants. Methods in Molecular Biology, 2018, 1694, 347-371.	0.9	0
12	Characterization of the responses to saline stress in the symbiotic green microalga Trebouxia sp. TR9. Planta, 2018, 248, 1473-1486.	3.2	18
13	<i>Polyamine oxidase 5</i> lossâ€ofâ€function mutations in <i>Arabidopsis thaliana</i> trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant, Cell and Environment, 2017, 40, 527-542.	5.7	66
14	Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	5
15	LOTUS spp: BIOTECHNOLOGICAL STRATEGIES TO IMPROVE THE BIOECONOMY OF LOWLANDS IN THE SALADO RIVER BASIN (ARGENTINA). Agrofor, 2016, 1, .	0.1	4
16	Polyamine Biosynthesis Engineering as a Tool to Improve Plant Resistance to Abiotic Stress. , 2015, , 103-116.		9
17	Genetic Engineering Strategies for Abiotic Stress Tolerance in Plants. , 2015, , 579-609.		42
18	Response to Long-Term NaHCO3-Derived Alkalinity in Model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic Profiling and Physiological Characterization. PLoS ONE, 2014, 9, e97106.	2.5	23

PEDRO CARRASCO

#	Article	IF	CITATIONS
19	Overexpression of SAMDC1 gene in Arabidopsis thaliana increases expression of defense-related genes as well as resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis. Frontiers in Plant Science, 2014, 5, 115.	3.6	32
20	Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes. BMC Plant Biology, 2014, 14, 40.	3.6	27
21	Defense Responses in Two Ecotypes of Lotus japonicus against Non-Pathogenic Pseudomonas syringae. PLoS ONE, 2013, 8, e83199.	2.5	32
22	New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Science, 2012, 182, 94-100.	3.6	80
23	Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science, 2012, 182, 121-133.	3.6	108
24	Aminopropyltransferases Involved in Polyamine Biosynthesis Localize Preferentially in the Nucleus of Plant Cells. PLoS ONE, 2012, 7, e46907.	2.5	106
25	The proanthocyanidin content as a tool to differentiate between Lotus tenuis and L. corniculatus individuals. Phytochemistry Letters, 2012, 5, 37-40.	1.2	7
26	Interactions between Polyamines and Abiotic Stress Pathway Responses Unraveled by Transcriptome Analysis of Polyamine Overproducers. OMICS A Journal of Integrative Biology, 2011, 15, 775-781.	2.0	93
27	Integration of polyamines in the cold acclimation response. Plant Science, 2011, 180, 31-38.	3.6	140
28	Homeostatic control of polyamine levels under long-term salt stress in Arabidopsis. Plant Signaling and Behavior, 2011, 6, 237-242.	2.4	7
29	Perturbation of <i>spermine synthase</i> Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against <i>Pseudomonas viridiflava</i> Â Â Â. Plant Physiology, 2011, 156, 2266-2277.	4.8	93
30	Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signaling and Behavior, 2011, 6, 278-286.	2.4	78
31	Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231, 1237-1249.	3.2	931
32	Evaluation of a technical revegetation action performed on foredunes at Devesa de la Albufera, Valencia, Spain. Land Degradation and Development, 2010, 21, 239-247.	3.9	8
33	Analysis of molecular markers in three different tomato cultivars exposed to ozone stress. Plant Cell Reports, 2007, 27, 197-207.	5.6	4
34	Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 2006, 28, 1867-1876.	2.2	503
35	Molecular Characterization and Evolution of the Protein Phosphatase 2A B′ Regulatory Subunit Family in Plants. Plant Physiology, 2002, 129, 808-822.	4.8	33
36	Expression of the pea S -adenosylmethionine decarboxylase gene is involved in developmental and environmental responses. Planta, 2002, 214, 641-647.	3.2	30

PEDRO CARRASCO

#	Article	IF	CITATIONS
37	Differential Expression of theS-Adenosyl-I-Methionine Synthase Genes during Pea Development1. Plant Physiology, 1998, 117, 397-405.	4.8	47
38	Hormonal regulation of S-adenosylmethionine synthase transcripts in pea ovaries. Plant Molecular Biology, 1996, 30, 821-832.	3.9	36
39	Developmental and organ-specific changes in DNA-protein interactions in the tomato rbcS3B and rbcS3C promoter regions. Plant Molecular Biology, 1993, 21, 1-15.	3.9	29
40	Developmental and organ-specific changes in DNA-protein interactions in the tomato rbcS1, rbcS2 and rbcS3A promoter regions. Plant Molecular Biology, 1993, 21, 69-88.	3.9	25
41	Biosynthesis and degradation of Rubisco during ovary senescence and fruit development induced by gibberellic acid in Pisum sativum. Physiologia Plantarum, 1992, 85, 476-482.	5.2	15
42	Biosynthesis and degradation of Rubisco during ovary senescence and fruit development induced by gibberellic acid in Pisum sativum. Physiologia Plantarum, 1992, 85, 476-482.	5.2	2
43	Developmental and organ-specific changes in promoter DNA-protein interactions in the tomato rbcS gene family Plant Cell, 1991, 3, 1305-1316.	6.6	98
44	Changes in the Level of Peptidase Activities in Pea Ovaries during Senescence and Fruit Set Induced by Gibberellic Acid. Plant Physiology, 1990, 92, 1070-1074.	4.8	29
45	Biochemical and histochemical detection of endoproteolytic activities involved in ovary senescence or fruit development inPisum sativum. Physiologia Plantarum, 1989, 76, 405-411.	5.2	18
46	Biochemical and histochemical detection of endoproteolytic activities involved in ovary senescence or fruit development in Pisum sativum. Physiologia Plantarum, 1989, 76, 405-411.	5.2	1
47	Involvement of a neutral proteolytic activity in the senescence of unpollinated ovaries of <i>Pisum sativum</i> >. Physiologia Plantarum, 1988, 72, 610-616.	5.2	22
48	A visual-electrophoretic method for following the purification of ribulose-1,5-bisphosphate carboxylase oxygenase. Biochemical Education, 1988, 16, 234-236.	0.1	1
49	1,3-β-Glucan hydrolase from Citrus. Phytochemistry, 1983, 22, 2699-2701.	2.9	5