Qilong Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1388917/publications.pdf

Version: 2024-02-01

840776 940533 15 484 11 16 citations h-index g-index papers 16 16 16 704 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly stable and regenerative graphene–diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosensors and Bioelectronics, 2018, 111, 117-123.	10.1	112
2	Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters. Applied Surface Science, 2018, 435, 809-814.	6.1	77
3	High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. Journal of Materials Chemistry C, 2017, 5, 1880-1884.	5.5	54
4	Enhanced Electromagnetic Shielding and Thermal Conductive Properties of Polyolefin Composites with a Ti ₃ C ₂ T _{<i>x</i>} MXene/Graphene Framework Connected by a Hydrogen-Bonded Interface. ACS Nano, 2022, 16, 9254-9266.	14.6	54
5	Sensitivity enhancement of potassium ion (K+) detection based on graphene field-effect transistors with surface plasma pretreatment. Sensors and Actuators B: Chemical, 2019, 285, 333-340.	7.8	40
6	All-carbon devices based on sp2-on-sp3 configuration. APL Materials, 2019, 7, .	5.1	29
7	A Diamond Temperature Sensor Based on the Energy Level Shift of Nitrogen-Vacancy Color Centers. Nanomaterials, 2019, 9, 1576.	4.1	26
8	Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles. Materials, 2018, 11, 489.	2.9	20
9	Single-Step Formation of Ni Nanoparticle-Modified Graphene–Diamond Hybrid Electrodes for Electrochemical Glucose Detection. Sensors, 2019, 19, 2979.	3.8	18
10	Surface modification on copper particles toward graphene reinforced copper matrix composites for electrical engineering application. Journal of Alloys and Compounds, 2022, 891, 162058.	5.5	13
11	Electrochemical Enantiomer Recognition Based on sp3-to-sp2 Converted Regenerative Graphene/Diamond Electrode. Nanomaterials, 2018, 8, 1050.	4.1	11
12	A Spiral Graphene Framework Containing Highly Ordered Graphene Microtubes for Polymer Composites with Superior <scp>Throughâ€Plane</scp> Thermal Conductivity. Chinese Journal of Chemistry, 2022, 40, 329-336.	4.9	11
13	Efficient monolithic diamond Raman yellow laser at 572.5Ânm. Optical Materials, 2021, 114, 110912.	3.6	7
14	Optical Properties of Bulk Single-Crystal Diamonds at 80–1200 K by Vibrational Spectroscopic Methods. Materials, 2021, 14, 7435.	2.9	5
15	Significant enhancement of corrosion resistance of stainless steel with nanostructured carbon coatings by substrate-catalytic CVD. Applied Nanoscience (Switzerland), 2021, 11, 725-733.	3.1	4