
Christopher J Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1388897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in the generation of non-racemic ferrocene derivatives and their application to asymmetric synthesis. Tetrahedron: Asymmetry, 1998, 9, 2377-2407.	1.8	440
2	Synthesis of 2-[2-(Diphenylphosphino)ferrocenyl]oxazoline Ligands. Synlett, 1995, 1995, 74-76.	1.0	233
3	Catalytic Asymmetric Rearrangement of AllylicN-Aryl Trifluoroacetimidates. A Useful Method for Transforming Prochiral Allylic Alcohols to Chiral Allylic Amines. Organic Letters, 2003, 5, 1809-1812.	2.4	174
4	Cationic [2,6-Bis(2â€~-oxazolinyl)phenyl]palladium(II) Complexes: Catalysts for the Asymmetric Michael Reaction. Organometallics, 2000, 19, 1282-1291.	1.1	157
5	Synthesis of phosphinoferrocenyloxazolines. New ligands for asymmetric catalysis. Tetrahedron: Asymmetry, 1996, 7, 1419-1430.	1.8	156
6	A Metallocene-Pyrrolidinopyridine Nucleophilic Catalyst for Asymmetric Synthesis. Organic Letters, 2006, 8, 769-772.	2.4	105
7	Synthesis and Highly Diastereoselective Palladation of (η5-(S)-2-(4-Methylethyl)oxazolinylcyclopentadienyl)(η4-tetraphenylcyclobutadiene)cobalt. Organometallics, 1999, 18, 1346-1348.	1.1	104
8	A metallocene molecular gear. Tetrahedron Letters, 1997, 38, 7805-7808.	0.7	102
9	Allylic Imidate Rearrangements Catalyzed by Planar Chiral Palladacycles. Chemistry - an Asian Journal, 2010, 5, 1726-1740.	1.7	96
10	Synthesis of Monodentate Ferrocenylphosphines and Their Application to the Palladium-Catalyzed Suzuki Reaction of Aryl Chlorides. Journal of Organic Chemistry, 2003, 68, 2592-2599.	1.7	84
11	Synthesis of 2,6-Bis(2-oxazolinyl)phenylplatinum(II) NCN Pincer Complexes by Direct Cyclometalation. Catalysts for Carbonâ~'Carbon Bond Formation. Organometallics, 2004, 23, 367-373.	1.1	83
12	Synthesis of tert-Leucine-Derived Cobalt Oxazoline Palladacycles. Reversal of Palladation Diastereoselectivity and Application to the Asymmetric Rearrangement of N-Aryl Trifluoroacetimidates. Organometallics, 2005, 24, 77-81.	1.1	78
13	An Investigation into the Allylic Imidate Rearrangement of Trichloroacetimidates Catalysed by Cobalt Oxazoline Palladacycles. Chemistry - A European Journal, 2007, 13, 10216-10224.	1.7	78
14	A Direct Route to Platinum NCN-Pincer Complexes Derived from 1,3-Bis(imino)benzenes and an Investigation into Their Activity as Catalysts for Carbonâ^'Carbon Bond Formation. Organometallics, 2002, 21, 5259-5264.	1.1	62
15	A ferrocene based palladacyclic precatalyst for the Suzuki cross-coupling of aryl chlorides. Chemical Communications, 2003, , 3002.	2.2	53
16	Synthesis of Planar Chiral Phosphapalladacycles by <i>N</i> -Acyl Amino Acid Mediated Enantioselective Palladation. Organometallics, 2009, 28, 5833-5836.	1.1	52
17	Synthesis of 1â€~-Substituted Derivatives of 1,2,3,4,5-Pentaphenylferrocene. Organometallics, 2002, 21, 5433-5436.	1.1	51
18	Synthesis of a [2.2]paracyclophane based planar chiral palladacycle by a highly selective kinetic resolution/C–H activation reaction. Chemical Communications, 2012, 48, 1991-1993.	2.2	45

Christopher J Richards

#	Article	IF	CITATIONS
19	Synthesis of Planar Chiral Phosphapalladacycles by Highly Enantioselective Transcyclopalladation. Journal of the American Chemical Society, 2005, 127, 2388-2389.	6.6	44
20	Asymmetric Synthesis of Unsaturated Monocyclic and Bicyclic Nitrogen Heterocycles. Organic Letters, 2009, 11, 2892-2895.	2.4	35
21	Synthesis and 1H NMR spectroscopic properties of substituted (Î-4-tetraarylcyclobutadiene)(Î-5-cyclopentadienyl)cobalt metallocenes. Journal of Organometallic Chemistry, 2008, 693, 3668-3676.	0.8	34
22	Metallocene-Appended Imidazoles Displaying Virtual Planar Chirality. Organometallics, 2001, 20, 1251-1254.	1.1	32
23	Assignment of 1H NMR chemical shifts in 1,2- and 1,1′-disubstituted ferrocenes. Tetrahedron Letters, 1999, 40, 5251-5254.	0.7	30
24	Asymmetric synthesis of oxindoles containing a quaternary stereogenic centre by catalytic O/C-carboxyl rearrangement. Tetrahedron Letters, 2009, 50, 6332-6334.	0.7	29
25	Enantiopure Ferroceneâ€Based Planarâ€Chiral Iridacycles: Stereospecific Control of Iridiumâ€Centred Chirality. Chemistry - A European Journal, 2016, 22, 3065-3072.	1.7	26
26	Application of the Suzuki reaction to the asymmetric desymmetrisation of 1,2- and 1,3-disubstituted bulky cobalt metallocenes. Tetrahedron: Asymmetry, 2010, 21, 1619-1623.	1.8	24
27	Deuterium as a Stereochemically Invisible Blocking Group for Chiral Ligand Synthesis. Organic Letters, 2017, 19, 702-705.	2.4	22
28	Asymmetric Synthesis of [3](1,1â€~)- and [3](1,1â€~)[3](3,3â€~)-Ferrocenophanes. Organometallics, 1999, 18, 3750-3759.	1.1	21
29	Size Does Matter. Sterically Demanding Metallocene-Substituted 3-Methylidene-Oxindoles Exhibit Poor Kinase Inhibitory Action. Organometallics, 2011, 30, 3177-3181.	1.1	19
30	Synthesis of Planar Chiral Cobalt Metallocenes by Microwave-Assisted Diastereoselective Complexation. Organometallics, 2006, 25, 2899-2902.	1.1	17
31	Models for the basis of enantioselection in palladium mediated C–H activation reactions. Tetrahedron: Asymmetry, 2010, 21, 2782-2787.	1.8	17
32	Enantioselective Synthesis and Application to the Allylic Imidate Rearrangement of Amine oordinated Palladacycle Catalysts of Cobalt Sandwich Complexes. Chemistry - A European Journal, 2013, 19, 17951-17962.	1.7	17
33	Stereoselective Synthesis of All Possible Phosferrox Ligand Diastereoisomers Displaying Three Elements of Chirality: Stereochemical Optimization for Asymmetric Catalysis. Journal of Organic Chemistry, 2020, 85, 4838-4847.	1.7	16
34	An investigation into the diastereoselective palladation of oxazoline appended cobalt metallocenes. Tetrahedron: Asymmetry, 2007, 18, 2613-2616.	1.8	14
35	Metallocene to metallocene conversion. Synthesis of an oxazoline-substituted pentamethyliridocenium cation from a ferrocenyloxazoline. Chemical Communications, 2016, 52, 7024-7027.	2.2	12
36	Catalyst Optimisation for Asymmetric Synthesis by Ligand Chirality Element Addition: A Perspective on Stereochemical Cooperativity. Chemistry - A European Journal, 2017, 23, 11460-11478.	1.7	12

3

Christopher J Richards

#	Article	IF	CITATIONS
37	Planar chiral palladacycle precatalysts for asymmetric synthesis. Organic and Biomolecular Chemistry, 2020, 18, 5466-5472.	1.5	11
38	Diastereoselective Synthesis of Planar Chiral Cobalt Metallocene Based Oxazoline Platinacycles. Organometallics, 2011, 30, 3901-3904.	1.1	10
39	Phenyl vs. Ferrocenyl Cyclometallation Selectivity: Diastereoselective Synthesis of an Enantiopure Iridacycle. European Journal of Inorganic Chemistry, 2017, 2017, 229-232.	1.0	10
40	Regioselective, Stereoselective, and Conformationally Controlled Synthesis of (η ⁴ -Tetraarylcyclobutadiene)(η ⁵ -carbomethoxycyclopentadienyl)cobalt Metallocenes. Organic Letters, 2012, 14, 894-897.	2.4	9
41	Stereoselective and Stereospecific Reactions of Cobalt Sandwich Complexes: Synthesis of a New Class of Single Enantiomer Bulky Planar Chiral Pâ^'N and Pâ^'P Ligands. Chemistry - A European Journal, 2018, 24, 4310-4319.	1.7	9
42	Enantiopure Planar Chiral and Chiral-at-Metal Iridacycles Derived from Bulky Cobalt Sandwich Complexes. Organometallics, 2018, 37, 4204-4212.	1.1	9
43	Application of Transmetalation to the Synthesis of Planar Chiral and Chiral-at-Metal Iridacycles. Organometallics, 2019, 38, 1099-1107.	1.1	9
44	Chirality Control in Planar Chiral Cobalt Oxazoline Palladacycles. Organometallics, 2015, 34, 2953-2961.	1.1	8
45	Application of the Nicholas reaction to the synthesis of dicobalt hexacarbonyl complexed diyne ethers. Journal of Organometallic Chemistry, 2015, 776, 43-50.	0.8	8
46	Synthesis of racemic palladacycles from 2-ferrocenylphenylphosphines. Journal of Organometallic Chemistry, 2015, 775, 12-19.	0.8	8
47	Enantiomerically Pure [2.2]Paracyclophane-4-thiol: A Planar Chiral Sulfur-Based Building Block Readily Available by Resolution with an Amino Acid Chiral Auxiliary. Journal of Organic Chemistry, 2016, 81, 3961-3966.	1.7	8
48	Ferrocenyloxazoline-Derived Planar Chiral Palladacycles: C–H Activation, Transmetalation, and Reversal of Diastereoselectivity. Organometallics, 2019, 38, 4271-4279.	1.1	8
49	Functionalization of [2.2]Paracyclophanes via a Reductive Sulfanylation Reaction. Journal of Organic Chemistry, 2021, 86, 507-514.	1.7	6
50	Diastereoselective synthesis of half-sandwich chiral-at-metal cobaltacycles by oxidative cyclisation. Chemical Communications, 2012, 48, 10192.	2.2	4
51	Application of a Ferroceneâ€Based Palladacycle Precatalyst to Enantioselective Arylâ€Aryl Kumada Coupling. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	4
52	Multiple Acetylation of Pentaphenylferrocene – Synthesis and Asymmetric Reduction of 1â€Acetylâ€1′,2′,3′,4′,5′â€penta(<i>para</i> â€acetylphenyl)ferrocene. European Journal of Inorg 2018, 2018, 1655-1659.	;ani c@ herr	nist z y,
53	Copper(I) Complexes of P â€Stereogenic Josiphos and Related Ligands. European Journal of Organic Chemistry, 2021, 2021, 2719-2725.	1.2	2
54	Synthesis of Diastereomeric Bis(oxazoline) Ligands Derived from (S,S)-1,1′-Bis(4-isopropyloxazolin-2-yl)ferrocene. Synlett, 2018, 29, 585-588.	1.0	1

#	Article	lF	CITATIONS
55	Synthetic approaches to N- and 4-substitued 1,4-dihydro-3(2H)-isoquinolinone derivatives. Tetrahedron, 2021, 100, 132455.	1.0	1
56	Frontispiece: Catalyst Optimisation for Asymmetric Synthesis by Ligand Chirality Element Addition: A Perspective on Stereochemical Cooperativity. Chemistry - A European Journal, 2017, 23, .	1.7	0