BartÅ, omiej WoÅ>

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1388778/publications.pdf Version: 2024-02-01

ΒΑΡΤΆ ΟΜΙΕΙ ΜΟΑ΄

#	Article	IF	CITATIONS
1	The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma, 2017, 292, 9-16.	5.1	80
2	Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecological Engineering, 2012, 49, 35-40.	3.6	63
3	Tree species and soil substrate effects on soil biota during early soil forming stages at afforested mine sites. Applied Soil Ecology, 2016, 102, 70-79.	4.3	48
4	Development of soil chemical and microbial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining. Ecological Engineering, 2018, 123, 103-111.	3.6	40
5	Scots pine needles macronutrient (N, P, K, CA, MG, and S) supply at different reclaimed mine soil substrates—as an indicator of the stability of developed forest ecosystems. Environmental Monitoring and Assessment, 2013, 185, 7445-7457.	2.7	28
6	Preliminary assessment of growth and survival of green alder (Alnus viridis), a potential biological stabilizer on fly ash disposal sites. Journal of Forestry Research, 2015, 26, 131-136.	3.6	27
7	Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10Âyears of the experiment. Environmental Science and Pollution Research, 2018, 25, 17091-17099.	5.3	22
8	Simulation of Birch and Pine Litter Influence on Early Stage of Reclaimed Soil Formation Process under Controlled Conditions. Journal of Environmental Quality, 2015, 44, 1091-1098.	2.0	20
9	Fine root biomass and the associated C and nutrient pool under the alder (Alnus spp.) plantings on reclaimed technosols. Geoderma, 2019, 337, 1021-1027.	5.1	20
10	Carbon sink potential and allocation in above- and below-ground biomass in willow coppice. Journal of Forestry Research, 2021, 32, 349-354.	3.6	18
11	The impact of alders (Alnus spp.) on the physico-chemical properties of technosols on a lignite combustion waste disposal site. Ecological Engineering, 2018, 120, 180-186.	3.6	17
12	Relationships between respiration, chemical and microbial properties of afforested mine soils with different soil texture and tree species: Does the time of incubation matter. European Journal of Soil Biology, 2017, 80, 102-109.	3.2	15
13	Reclaimed mine soil substrates and tree stands vs. successional forest floor vegetation: A case study of developing ecosystems on afforested mine sites. Ecological Engineering, 2018, 120, 504-512.	3.6	13
14	Verifying the Utility of Black Locust (Robinia pseudoacacia L.) in the Reclamation of a Lignite Combustion Waste Disposal Site in Central European Conditions. Forests, 2020, 11, 877.	2.1	10
15	Chemical and microbial properties of post-mining and post-fire soils afforested with different tree species. Applied Soil Ecology, 2022, 171, 104321.	4.3	9
16	Effect of tree species and soil texture on the carbon stock, macronutrient content, and physicochemical properties of regenerated postfire forest soils. Land Degradation and Development, 2021, 32, 5227-5240.	3.9	8
17	Influence of tree species on carbon, nitrogen, and phosphorus stocks and stoichiometry under different soil regeneration scenarios on reclaimed and afforested mine and post-fire forest sites. Geoderma, 2022, 415, 115782.	5.1	8
18	Colonisation by enchytraeids as a suitable indicator of successful biological reclamation of post-mining technosols using alders. Applied Soil Ecology, 2020, 145, 103300.	4.3	7

#	Article	IF	CITATIONS
19	Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems. Forests, 2022, 13, 63.	2.1	7
20	Mercury Concentration in Technosols and Alder Tissue from a Plantation on a Combustion Waste Disposal Site. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	6
21	Bioaccumulation of Heavy Metals (Pb, Cd, Cr, Cu) in Fine Roots Under Three Species of Alders (Alnus) Tj ETQq1 1 Water, Air, and Soil Pollution, 2019, 230, 1.	0.784314 2.4	rgBT /Overlo 6
22	Assessment of english oak (Quercus robur L.) growth in varied soil-substrate conditions of reclaimed Piaseczno sulfur mine dump. Folia Forestalia Polonica, Series A, 2015, 57, 28-32.	0.3	6
23	Effect of green alder (Alnus viridis) and black alder (Alnus glutinosa) on chemical and microbial properties of sandy mine soils. Geoderma, 2019, 356, 113924.	5.1	5
24	Carbon and Macronutrient Budgets in an Alder Plantation Grown on a Reclaimed Combustion Waste Landfill. Forests, 2020, 11, 430.	2.1	4
25	The impact of alder litter on chemistry of Technosols developed from lignite combustion waste and natural sandy substrate: a laboratory experiment. International Journal of Phytoremediation, 2021, 23, 415-425.	3.1	4
26	Characteristics of technogenic soils developed from Neogene and Quaternary sediments substrate on reclaimed sulphur and sand extraction mine sites. Soil Science Annual, 2021, 71, 344-351.	0.8	4
27	EFFECTS OF ALDERS (ALNUS SP.) USED FOR RECLAMATION OF LIGNITE COMBUSTION WASTES. Journal of the American Society of Mining and Reclamation, 2018, 7, 30-55.	0.3	3
28	The Impact of Climate Change on Forest Tree Species Dieback and Changes in Their Distribution. Soil Biology, 2021, , 447-460.	0.8	3
29	Soil Organic Carbon Pools and Associated Soil Chemical Properties under Two Pine Species (Pinus) Tj ETQq1 1 0.	784314 rg 2.1	gBŢ /Overlock
30	Biomonitoring of Mercury Contamination in Poland Based on Its Concentration in Scots Pine (Pinus) Tj ETQq0 0 (10366.	0 rgBT /Ov 2.6	erlock 10 Tf
31	Assessment of tree vitality, biomass and morphology of Scots pine (Pinus sylvestris L.) root systems growing on reclaimed landfill waste after zinc and lead flotation. Forest Research Papers, 2017, 78, 323-331.	0.2	1
32	A comparison of the selected properties of macrostructure and density of wood of scots pines (<i>Pinus sylvestris</i> L.) growing on various mine soil substrates. Folia Forestalia Polonica, Series A, 2018, 60, 11-21.	0.3	1
33	Use of Alders for the Phytostabilization of a Combustion Waste Disposal Site. Eurasian Soil Science, 0, , 1.	1.6	0

Bartå,omiej Woå›