Vijay Bhooshan Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1388765/publications.pdf

Version: 2024-02-01

77 papers

2,269 citations

172207 29 h-index 243296 44 g-index

78 all docs 78 docs citations

78 times ranked 2850 citing authors

#	Article	IF	CITATIONS
1	Synthesis of Doped/Hybrid Carbon Dots and Their Biomedical Application. Nanomaterials, 2022, 12, 898.	1.9	22
2	Development of Doped Carbon Quantum Dot-Based Nanomaterials for Lubricant Additive Applications. Lubricants, 2022, 10, 144.	1,2	13
3	Exploring the Effect of Iron Metal-Organic Framework Particles in Polylactic Acid Membranes for the Azeotropic Separation of Organic/Organic Mixtures by Pervaporation. Membranes, 2021, 11, 65.	1.4	34
4	Facile Molecular Catalysis for Isomerization of Glucose to Fructose Using KMnO4in Water. ChemistrySelect, 2020, 5, 2913-2917.	0.7	4
5	Cooperative crystallization effect in the formation of sonochemically grafted active materials based on polysaccharides. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110931.	2.5	3
6	Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrasonics Sonochemistry, 2020, 64, 105009.	3.8	132
7	Advances in nanotechnology and nanomaterials based strategies for neural tissue engineering. Journal of Drug Delivery Science and Technology, 2020, 57, 101617.	1.4	88
8	Nutritional assessment study and role of green silver nanoparticles in shelf-life of coconut endosperm to develop as functional food. Saudi Journal of Biological Sciences, 2020, 27, 1280-1288.	1.8	19
9	Advances in Nanotechnology based Strategies forÂSynthesis of Nanoparticles of Lignin. Springer Series on Polymer and Composite Materials, 2020, , 203-229.	0.5	5
10	Size-Controlled Synthesis of L10-CoPt Intermetallic Fuel Cell Catalysts on Nitrogen-Doped Mesoporous Graphitized Carbon Support. ECS Meeting Abstracts, 2020, MA2020-01, 1623-1623.	0.0	0
11	Silver and gold doped hydroxyapatite nanocomposites for enhanced bone regeneration. Biomedical Materials (Bristol), 2019, 14, 055002.	1.7	25
12	Tribological Anti-Wear and Extreme-Pressure Performance of Multifunctional Metal and Nonmetal Doped C-based Nanodots. Lubricants, 2019, 7, 36.	1.2	8
13	Oneâ€Pot Hydrothermal Synthesis of Elements (B, N, P)â€Doped Fluorescent Carbon Dots for Cell Labelling, Differentiation and Outgrowth of Neuronal Cells. ChemistrySelect, 2019, 4, 4222-4232.	0.7	29
14	Functionalization of WS 2 Nanotubes with Fluorescent Câ \in dots and Conductive Polythiophenes. Macromolecular Chemistry and Physics, 2019, 220, 1800476.	1.1	2
15	Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst. Ultrasonics Sonochemistry, 2019, 56, 55-62.	3.8	30
16	AS101-Loaded PLGA–PEG Nanoparticles for Autoimmune Regulation and Chemosensitization. ACS Applied Bio Materials, 2019, 2, 2246-2251.	2.3	3
17	Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrasonics Sonochemistry, 2019, 52, 205-213.	3 . 8	70
18	Element (B, N, P) doped carbon dots interaction with neural cells: promising results and future prospective. , 2019 , , .		11

#	Article	IF	CITATIONS
19	Ultrafine Highly Magnetic Fluorescent \hat{I}^3 -Fe ₂ 0 ₃ /NCD Nanocomposites for Neuronal Manipulations. ACS Omega, 2018, 3, 1897-1903.	1.6	22
20	Enantiospecific Total Syntheses of (+)â€Hapalindole H and (â^')â€12â€ <i>epi</i> à€Hapalindole U. Chemistry - A European Journal, 2018, 24, 8980-8984.	1.7	13
21	Antiparasitic Ointment Based on a Biocompatibile Carbon Dot Nanocomposite. ACS Applied Nano Materials, 2018, 1, 1784-1791.	2.4	19
22	Type-I superconductivity in carbon-coated Sn nano-spheres. Physica C: Superconductivity and Its Applications, 2018, 546, 6-10.	0.6	6
23	One-pot Sonochemical Synthesis of Hg–Ag Alloy Microspheres from Liquid Mercury. Ultrasonics Sonochemistry, 2018, 40, 157-165.	3.8	14
24	Novel polymerization of aniline and pyrrole by carbon dots. New Journal of Chemistry, 2018, 42, 535-540.	1.4	47
25	Fabrication of poly (4,4′-oxybisbenzenamine) and its conjugated copolymers initiated by easily accessible carbon dots. European Polymer Journal, 2018, 109, 153-161.	2.6	17
26	Formation of metallic silver and copper in non-aqueous media by ultrasonic radiation. Ultrasonics Sonochemistry, 2018, 47, 108-113.	3.8	9
27	Accelerated Bone Regeneration by Nitrogen-Doped Carbon Dots Functionalized with Hydroxyapatite Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19373-19385.	4.0	89
28	Kinetics, Isotherm, and Thermodynamic Studies of Methylene Blue Adsorption on Polyaniline and Polypyrrole Macro–Nanoparticles Synthesized by C-Dot-Initiated Polymerization. ACS Omega, 2018, 3, 7196-7203.	1.6	94
29	Carbon Dot Initiated Synthesis of Poly(4,4′-diaminodiphenylmethane) and Its Methylene Blue Adsorption. ACS Omega, 2018, 3, 7061-7068.	1.6	35
30	Enantioselective Separation of Racemic Tryptophan with Sonochemically Prepared Egg Albumin Microspheres. ChemistrySelect, 2018, 3, 4004-4008.	0.7	6
31	Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. Journal of Materials Chemistry B, 2017, 5, 1371-1379.	2.9	37
32	Nitrogen-doped carbon dots prepared from bovine serum albumin to enhance algal astaxanthin production. Algal Research, 2017, 23, 161-165.	2.4	39
33	The interaction between molten gallium and the hydrocarbon medium induced by ultrasonic energyâ€"can gallium carbide be formed?. Journal of the American Ceramic Society, 2017, 100, 3305-3315.	1.9	10
34	Fluorescent Nanoparticles with Tissue-Dependent Affinity for Live Zebrafish Imaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18557-18565.	4.0	39
35	Stiffening of Metallic Gallium Particles by Entrapment of Organic Molecules. Crystal Growth and Design, 2017, 17, 2041-2045.	1.4	5
36	A New Approach to Chiral Enrichment by Exposure of Racemates of Amino Acids to Sonochemicallyâ€Prepared BSA Microspheres. ChemistrySelect, 2017, 2, 8234-8238.	0.7	6

#	Article	IF	CITATIONS
37	Solarâ€Lightâ€Driven Photocatalytic Activity of Novel Sn@Câ€Dotsâ€Modified TiO ₂ Catalyst. ChemistrySelect, 2017, 2, 6683-6688.	0.7	20
38	Refractive-Index Tuning of Highly Fluorescent Carbon Dots. ACS Applied Materials & Emp; Interfaces, 2017, 9, 28930-28938.	4.0	51
39	Topographical impact of silver nanolines on the morphology of neuronal SH-SY5Y Cells. Journal of Materials Chemistry B, 2017, 5, 9346-9353.	2.9	12
40	Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa . International Journal of Nanomedicine, 2017, Volume 12, 725-730.	3.3	29
41	In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries. RSC Advances, 2016, 6, 66256-66265.	1.7	30
42	Preparation and Catalytic Activity of Thermosensitive Ga ₂ O ₃ Nanorods. Energy & E	2.5	20
43	<i>In-Situ</i> Transesterification of <i>Chlorella vulgaris</i> Using Carbon-Dot Functionalized Strontium Oxide as a Heterogeneous Catalyst under Microwave Irradiation. Energy & Energ	2.5	35
44	Surfactant-free synthesis of a water-soluble PEGylated nanographeneoxide/metal-oxide nanocomposite as engineered antimicrobial weaponry. Journal of Materials Chemistry B, 2016, 4, 6706-6715.	2.9	4
45	Development of Ga Salt of Molybdophosphoric Acid for Biomass Conversion to Levulinic Acid. Energy & En	2.5	30
46	Ga Modified Zeolite Based Solid Acid Catalyst for Levulinic Acid Production. ChemistrySelect, 2016, 1, 5952-5960.	0.7	13
47	Activated Carbon Modified with Carbon Nanodots as Novel Electrode Material for Supercapacitors. Journal of Physical Chemistry C, 2016, 120, 13406-13413.	1.5	72
48	On the nature of the nanospikes obtained in the sonication of a molten mixture of bismuth and indium under silicone oil. Journal of Alloys and Compounds, 2016, 672, 476-480.	2.8	4
49	Designing idiosyncratic hmPCL -siRNA nanoformulated capsules for silencing and cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 579-588.	1.7	23
50	Glucose production from potato peel waste under microwave irradiation. Journal of Molecular Catalysis A, 2016, 417, 163-167.	4.8	22
51	A hydrothermal reaction of an aqueous solution of BSA yields highly fluorescent N doped C-dots used for imaging of live mammalian cells. Journal of Materials Chemistry B, 2016, 4, 2913-2920.	2.9	45
52	Dispersion of Polymers in Metallic Gallium. ChemPhysChem, 2016, 17, 162-169.	1.0	3
53	Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications. Ultrasonics Sonochemistry, 2016, 32, 54-59.	3.8	47
54	Sonochemical Formation of Ga-Pt Intermetallic Nanoparticles Embedded in Graphene and its Potential Use as an Electrocatalyst. Electrochimica Acta, 2016, 190, 659-667.	2.6	34

#	Article	IF	Citations
55	Evaluation of the Potential of <i>Chlorella vulgaris</i> for Bioethanol Production. Energy & mp; Fuels, 2016, 30, 3161-3166.	2.5	26
56	Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrasonics Sonochemistry, 2016, 28, 367-375.	3.8	68
57	DSC measurements of the thermal properties of gallium particles in the micron and sub-micron sizes, obtained by sonication of molten gallium. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1587-1592.	2.0	33
58	Selective conversion of starch to glucose using carbon based solid acid catalyst. Renewable Energy, 2015, 78, 141-145.	4.3	33
59	Chiral imprinting in molten gallium. New Journal of Chemistry, 2015, 39, 2690-2696.	1.4	20
60	Synergistic catalytic effect of the ZnBr ₂ â€"HCl system for levulinic acid production using microwave irradiation. RSC Advances, 2015, 5, 11043-11048.	1.7	19
61	Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water. Ultrasonics Sonochemistry, 2015, 26, 340-344.	3.8	47
62	Reduction of metallic ions by molten gallium under ultrasonic irradiation and interactions between the formed metals and the gallium. Journal of Alloys and Compounds, 2015, 637, 538-544.	2.8	13
63	Thermal and structural characterization of ultrasonicated BiSn alloy in the eutectic composition. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1543-1551.	2.0	6
64	Formation of particles of bismuth-based binary alloys and intermetallic compounds by ultrasonic cavitation. New Journal of Chemistry, 2015, 39, 5374-5381.	1.4	24
65	The sonochemical synthesis of Ga@C-dots particles. RSC Advances, 2015, 5, 25533-25540.	1.7	48
66	Sonochemical synthesis, structural, magnetic and grain size dependent electrical properties of NdVO4 nanoparticles. Ultrasonics Sonochemistry, 2014, 21, 599-605.	3.8	36
67	Ultrasonic cavitation of molten gallium in water: entrapment of organic molecules in gallium microspheres. Journal of Materials Chemistry A, 2014, 2, 1309-1317.	5.2	38
68	Facile synthesis of self-assembled spherical and mesoporous dandelion capsules of ZnO: efficient carrier for DNA and anti-cancer drugs. Journal of Materials Chemistry B, 2014, 2, 3956-3964.	2.9	40
69	Ultrasonic cavitation of molten gallium: Formation of micro- and nano-spheres. Ultrasonics Sonochemistry, 2014, 21, 1166-1173.	3.8	69
70	Triangular Core–Shell ZnO@SiO ₂ Nanoparticles. ChemPhysChem, 2013, 14, 3215-3220.	1.0	9
71	Synthesis of mesoporous SiO2â \in "ZnO nanocapsules: encapsulation of small biomolecules for drugs and $\hat{a}\in\infty$ SiOZO-plexâ \in -for gene delivery. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	22
72	Recent Advancement in Functional Core-Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology. Journal of Nanoparticles, 2013, 2013, 1-24.	1.4	96

#	Article	IF	CITATIONS
73	A Brief Review on the <i>In Situ </i> Synthesis of Boron-Doped Diamond Thin Films. International Journal of Electrochemistry, 2012, 2012, 1-7.	2.4	20
74	Probing Spin–Spin and Spin-Lattice Relaxation Through Electron Paramagnetic Resonance Study of Nanoscale WO _{3Ⱂ<i>x</i>} System. Materials Express, 2012, 2, 57-63.	0.2	7
75	Physical and Biophysical Characteristics of Nanoscale Tungsten Oxide Particles and Their Interaction with Human Genomic DNA. Journal of Nanoscience and Nanotechnology, 2011, 11, 4659-4666.	0.9	7
76	Formation of nanoscale tungsten oxide structures and colouration characteristics. Bulletin of Materials Science, 2011, 34, 435-442.	0.8	85
77	Formation of Iron (III) Trimesate Xerogel by Ultrasonic Irradiation. European Journal of Inorganic Chemistry, 0, , .	1.0	4