
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1388423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ETS-related Gene (ERG) Controls Endothelial Cell Permeability via Transcriptional Regulation of the Claudin 5 (CLDN5) Gene. Journal of Biological Chemistry, 2012, 287, 6582-6591.	1.6	82
2	Single-Cell RNA-Sequencing and Metabolomics Analyses Reveal the Contribution of Perivascular Adipose Tissue Stem Cells to Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2049-2066.	1.1	72
3	RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG. Blood, 2011, 118, 1145-1153.	0.6	70
4	Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. Journal of Biological Chemistry, 2018, 293, 8089-8102.	1.6	58
5	ERG is required for the differentiation of embryonic stem cells along the endothelial lineage. BMC Developmental Biology, 2009, 9, 72.	2.1	54
6	Erg is a crucial regulator of endocardial-mesenchymal transformation during cardiac valve morphogenesis. Development (Cambridge), 2012, 139, 3973-3985.	1.2	50
7	A Cytokine-Like Protein Dickkopf-Related Protein 3 Is Atheroprotective. Circulation, 2017, 136, 1022-1036.	1.6	47
8	Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis. Antioxidants and Redox Signaling, 2018, 29, 219-235.	2.5	35
9	Binding of Dickkopf-3 to CXCR7 Enhances Vascular Progenitor Cell Migration and Degradable Graft Regeneration. Circulation Research, 2018, 123, 451-466.	2.0	34
10	Transdifferentiated Human Vascular Smooth Muscle Cells are a New Potential Cell Source for Endothelial Regeneration. Scientific Reports, 2017, 7, 5590.	1.6	32
11	Adventitial Sca1+ Cells Transduced With ETV2 Are Committed to the Endothelial Fate and Improve Vascular Remodeling After Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 232-244.	1.1	30
12	Leptin Induces Sca-1 ⁺ Progenitor Cell Migration Enhancing Neointimal Lesions in Vessel-Injury Mouse Models. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2114-2127.	1.1	27
13	Adventitial SCA-1 + Progenitor Cell Gene Sequencing Reveals the Mechanisms of Cell Migration in Response to Hyperlipidemia. Stem Cell Reports, 2017, 9, 681-696.	2.3	25
14	Endothelial Cell Activation Is Regulated by Epidermal Growth Factor-like Domain 7 (Egfl7) during Inflammation. Journal of Biological Chemistry, 2016, 291, 24017-24028.	1.6	22
15	VE-statin/egfl7 Expression in Endothelial Cells Is Regulated by a Distal Enhancer and a Proximal Promoter under the Direct Control of Erg and GATA-2. PLoS ONE, 2010, 5, e12156.	1.1	19
16	Reprogramming towards endothelial cells for vascular regeneration. Genes and Diseases, 2016, 3, 186-197.	1.5	14
17	Dynamics of fibroblast activation in the infarcted heart. Nature Reviews Cardiology, 2018, 15, 379-379.	6.1	11
18	Exosome-based therapy to repair the injured heart. Nature Reviews Cardiology, 2018, 15, 382-382.	6.1	10

#	Article	IF	CITATIONS
19	Light smoking and CVD risk. Nature Reviews Cardiology, 2018, 15, 136-136.	6.1	7
20	Lipoprotein(a) is an independent predictor of CVD. Nature Reviews Cardiology, 2018, 15, 727-727.	6.1	7
21	Cholesterol-dependent inflammasome activation accelerates atherosclerosis. Nature Reviews Cardiology, 2018, 15, 318-319.	6.1	6
22	Long-term mortality benefit of CABG surgery over PCI in patients with diabetes mellitus. Nature Reviews Cardiology, 2019, 16, 3-3.	6.1	6
23	3D printing of personalized implants for left atrial appendage occlusion. Nature Reviews Cardiology, 2018, 15, 134-134.	6.1	5
24	The IncRNA CHROME regulates cholesterol homeostasis. Nature Reviews Cardiology, 2019, 16, 71-71.	6.1	5
25	Hypertension intervention at the barbershop. Nature Reviews Cardiology, 2018, 15, 257-257.	6.1	3
26	Tafamidis: a new treatment for ATTR cardiomyopathy. Nature Reviews Cardiology, 2018, 15, 652-652.	6.1	3
27	Targeting the gut to protect the heart. Nature Reviews Cardiology, 2018, 15, 581-581.	6.1	3
28	No benefit of methotrexate on the risk of cardiovascular events. Nature Reviews Cardiology, 2019, 16, 2-3.	6.1	3
29	Pericardial adipose tissue regulates granulopoiesis. Nature Reviews Cardiology, 2018, 15, 254-254.	6.1	2
30	ROBO4 variants linked to congenital heart defects. Nature Reviews Cardiology, 2019, 16, 70-70.	6.1	2
31	Safety and efficacy of sacubitril─valsartan in acute heart failure. Nature Reviews Cardiology, 2019, 16, 4-4.	6.1	2
32	Epigenetic map of heart development and disease. Nature Reviews Cardiology, 2018, 15, 197-197.	6.1	1
33	Benefit of BP self-monitoring for hypertension. Nature Reviews Cardiology, 2018, 15, 254-254.	6.1	1
34	BMP9 is an inhibitor of cardiac fibrosis. Nature Reviews Cardiology, 2018, 15, 254-254.	6.1	1
35	Visceral adipose tissue regulates cardiac ageing. Nature Reviews Cardiology, 2018, 15, 255-255.	6.1	1
36	3D virtual heart to guide VT ablation. Nature Reviews Cardiology, 2018, 15, 654-654.	6.1	1

3

#	Article	IF	CITATIONS
37	Cardiac lymphatics mediate the resolution of inflammation. Nature Reviews Cardiology, 2018, 15, 583-583.	6.1	1
38	Drug-eluting stents versus bare-metal stents for vein-graft PCI. Nature Reviews Cardiology, 2018, 15, 442-442.	6.1	1
39	Chronotherapy for atherosclerosis. Nature Reviews Cardiology, 2018, 15, 440-441.	6.1	1
40	Poor sleep linked to atherosclerosis. Nature Reviews Cardiology, 2019, 16, 132-132.	6.1	1
41	No long-term benefit of IABP in cardiogenic shock. Nature Reviews Cardiology, 2019, 16, 3-3.	6.1	1
42	RNA deadenylation by CCR4–NOT controls heart function. Nature Reviews Cardiology, 2018, 15, 197-197.	6.1	0
43	Mental stress puts women's hearts at risk. Nature Reviews Cardiology, 2018, 15, 198-198.	6.1	0
44	Endocarditis: oral versus intravenous antibiotics. Nature Reviews Cardiology, 2018, 15, 653-653.	6.1	0
45	Perivascular fat mapping predicts cardiac death. Nature Reviews Cardiology, 2018, 15, 656-656.	6.1	0
46	Ticagrelor not superior to DAPT after PCI. Nature Reviews Cardiology, 2018, 15, 655-655.	6.1	0
47	GWAS identifies new blood lipid-associated genetic variants. Nature Reviews Cardiology, 2018, 15, 728-728.	6.1	0
48	Radial-artery versus saphenous-vein grafts. Nature Reviews Cardiology, 2018, 15, 440-440.	6.1	0
49	Genetic variation explains residual CHD risk with statin therapy. Nature Reviews Cardiology, 2018, 15, 440-440.	6.1	0
50	TANNylated proteins target the heart. Nature Reviews Cardiology, 2018, 15, 440-440.	6.1	0
51	AAA: to screen or not to screen?. Nature Reviews Cardiology, 2018, 15, 503-503.	6.1	0
52	A new organoid model to study diabetic vasculopathy. Nature Reviews Cardiology, 2019, 16, 131-131.	6.1	0
53	Endoscopic versus open vein-graft harvesting. Nature Reviews Cardiology, 2019, 16, 3-3.	6.1	0