
Hong-Zhang Geng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1388143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vacuumâ€Assisted Layerâ€by‣ayer Carbon Nanotube/Ti ₃ C ₂ T <i>_X</i> MXene Films for Detecting Human Movements. Advanced Materials Technologies, 2022, 7, 2101096.	5.8	6
2	Tannic Acid Modified Singleâ€Walled Carbon Nanotube/Zinc Oxide Nanoparticle Thin Films for UV/Visible Semitransparent Photodiodeâ€Type Photodetectors. ChemPhotoChem, 2022, 6, .	3.0	5
3	Novel biodegradable and ultra-flexible transparent conductive film for green light OLED devices. Carbon, 2021, 172, 379-389.	10.3	42
4	Wrinkled p-phenylenediamine grafted graphene oxide as reinforcement for polyvinyl butyral anti-corrosive coating. Journal of Materials Science, 2021, 56, 12686-12699.	3.7	8
5	Polyaniline/polysulfone ultrafiltration membranes with improved permeability and anti-fouling behavior. Journal of Water Process Engineering, 2021, 40, 101903.	5.6	18
6	Bilayer and three dimensional conductive network composed by SnCl2 reduced rGO with CNTs and GO applied in transparent conductive films. Scientific Reports, 2021, 11, 9891.	3.3	5
7	Low Surface Roughness Graphene Oxide Film Reduced with Aluminum Film Deposited by Magnetron Sputtering. Nanomaterials, 2021, 11, 1428.	4.1	4
8	Flexible Electrothermal Laminate Films Based on Tannic Acid-Modified Carbon Nanotube/Thermoplastic Polyurethane Composite. Industrial & Engineering Chemistry Research, 2021, 60, 7844-7852.	3.7	21
9	Strong adhesion and high optoelectronic performance hybrid graphene/carbon nanotubes transparent conductive films for green-light OLED devices. Surfaces and Interfaces, 2021, 24, 101137.	3.0	8
10	High-Performance Transparent PEDOT: PSS/CNT Films for OLEDs. Nanomaterials, 2021, 11, 2067.	4.1	17
11	Anti-corrosion reinforcement of waterborne polyurethane coating with polymerized graphene oxide by the one-pot method. Journal of Materials Science, 2021, 56, 337-350.	3.7	11
12	Highly transparent, low sheet resistance and stable Tannic acid modified-SWCNT/AgNW double-layer conductive network for organic light emitting diodes. Nanotechnology, 2021, 32, 015708.	2.6	21
13	Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT:PSS nanocomposites as flexible transparent electrodes for OLEDs. Applied Surface Science, 2020, 500, 143997.	6.1	50
14	Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection. Journal of Hazardous Materials, 2020, 384, 120978.	12.4	76
15	Highly stable and conductive PEDOT:PSS/GO-SWCNT bilayer transparent conductive films. New Journal of Chemistry, 2020, 44, 780-790.	2.8	21
16	Water-based polyurethane composite anticorrosive barrier coating via enhanced dispersion of functionalized graphene oxide in the presence of acidified multi-walled carbon nanotubes. Progress in Organic Coatings, 2020, 146, 105734.	3.9	22
17	Tannic acid modified graphene/CNT three-dimensional conductive network for preparing high-performance transparent flexible heaters. Journal of Colloid and Interface Science, 2020, 577, 300-310.	9.4	51
18	Improved resistance stability of transparent conducting films prepared by PEDOT: PSS hybrid CNTs treated by a two-step method. Materials Research Express, 2019, 6, 116425.	1.6	3

HONG-ZHANG GENG

#	Article	IF	CITATIONS
19	Mechanism of surface treatments on carbon nanotube transparent conductive films by three different reagents. RSC Advances, 2019, 9, 3162-3168.	3.6	8
20	Highly conductive sandwich-structured CNT/PEDOT:PSS/CNT transparent conductive films for OLED electrodes. Applied Nanoscience (Switzerland), 2019, 9, 1971-1979.	3.1	34
21	Improvement of Corrosion Resistance of Waterborne Polyurethane Coatings by Covalent and Noncovalent Grafted Graphene Oxide Nanosheets. ACS Omega, 2019, 4, 20265-20274.	3.5	64
22	Enhanced performance of conductive polysulfone/MWCNT/PANI ultrafiltration membrane in an online fouling monitoring application. Journal of Membrane Science, 2019, 575, 160-169.	8.2	40
23	High conductive PPy–CNT surface-modified PES membrane with anti-fouling property. Applied Nanoscience (Switzerland), 2018, 8, 1597-1606.	3.1	20
24	Carbon nanotube-based flexible electrothermal film heaters with a high heating rate. Royal Society Open Science, 2018, 5, 172072.	2.4	43
25	Carbon nanotube/polyurethane films with high transparency, low sheet resistance and strong adhesion for antistatic application. RSC Advances, 2017, 7, 53018-53024.	3.6	54
26	High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes. Applied Surface Science, 2017, 392, 1117-1125.	6.1	34
27	A timesaving, low-cost, high-yield method for the synthesis of ultrasmall uniform graphene oxide nanosheets and their application in surfactants. Nanotechnology, 2016, 27, 055601.	2.6	16
28	Hierarchical chrysanthemum-flower-like carbon nanomaterials grown by chemical vapor deposition. Nanotechnology, 2016, 27, 085602.	2.6	5
29	Recent Research Progress of Carbon Nanotube Arrays Prepared by Plasma Enhanced Chemical Vapor Deposition Method. Materials Science Forum, 2016, 852, 308-314.	0.3	1
30	Synthesis and optimization of tin dioxide/functionalized multi-walled carbon nanotube composites as anode in lithium-ion battery. Materials Chemistry and Physics, 2015, 153, 155-160.	4.0	8
31	Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism. Scientific Reports, 2015, 5, 11281.	3.3	18
32	Fabrication and evaluation of adhesion enhanced flexible carbon nanotube transparent conducting films. Journal of Materials Chemistry C, 2015, 3, 3796-3802.	5.5	30
33	Temperature and voltage dependent current–voltage behavior of single-walled carbon nanotube transparent conducting films. Applied Surface Science, 2015, 355, 1201-1205.	6.1	9
34	Preparation, characterization, and chemical-induced hydrophobicity of thermostable amine-modified graphene oxide. RSC Advances, 2015, 5, 105393-105399.	3.6	11
35	Growth of morphology-controllable carbon nanocoils from Ni nanoparticle prepared by spray-coating method. Carbon, 2015, 82, 604-607.	10.3	11
36	Three-Dimensionally Porous Polystyrene Films Fabricated via an Ultrasound Assisted Template Method. Materials Science Forum, 2014, 809-810, 660-664.	0.3	0

HONG-ZHANG GENG

#	Article	IF	CITATIONS
37	Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70, 103-110.	10.3	41
38	Fabrication and test of adhesion enhanced flexible carbon nanotube transparent conducting films. Applied Surface Science, 2014, 313, 220-226.	6.1	25
39	Optimizing processes of dispersant concentration and post-treatments for fabricating single-walled carbon nanotube transparent conducting films. Applied Surface Science, 2013, 277, 128-133.	6.1	33
40	Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes. Nanotechnology, 2013, 24, 435201.	2.6	33
41	Effect of functionalization of multi-walled carbon nanotube on the curing behavior and mechanical property of multi-walled carbon nanotube/epoxy composites. Materials & Design, 2013, 49, 279-284.	5.1	93
42	Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon, 2013, 54, 277-282.	10.3	131
43	Purification and Dispersion of Single-walled Carbon Nanotubes for Transparent Conducting Films. Integrated Ferroelectrics, 2013, 145, 80-87.	0.7	5
44	Hydrogen storage in microwave-treated multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2010, 35, 2073-2082.	7.1	27
45	Studying compactibility and uniformity of green molding sand by gamma-ray attenuation. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 638-641.	1.4	2
46	Strategy for High Concentration Nanodispersion of Single-Walled Carbon Nanotubes with Diameter Selectivity. Journal of Physical Chemistry C, 2009, 113, 10044-10051.	3.1	17
47	Three-dimensional architecture of carbon nanotube-anchored polymer nanofiber composite. Journal of Materials Chemistry, 2009, 19, 7822.	6.7	17
48	Absorption spectroscopy of surfactant-dispersed carbon nanotube film: Modulation of electronic structures. Chemical Physics Letters, 2008, 455, 275-278.	2.6	124
49	Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment. Journal of Materials Chemistry, 2008, 18, 1261.	6.7	132
50	Fermi Level Engineering of Single-Walled Carbon Nanotubes by AuCl ₃ Doping. Journal of the American Chemical Society, 2008, 130, 12757-12761.	13.7	238
51	Recent progress in carbon nanotube-based flexible transparent conducting film. , 2008, , .		2
52	Transparent Conducting Films by Using Carbon Nanotubes. , 2008, , 15-28.		3
53	Effect of Carbon Nanotube Types in Fabricating Flexible Transparent Conducting Films. Journal of the Korean Physical Society, 2008, 53, 979-985.	0.7	28
54	DEPENDENCE OF MATERIAL QUALITY ON PERFORMANCE OF FLEXIBLE TRANSPARENT CONDUCTING FILMS WITH SINGLE-WALLED CARBON NANOTUBES. Nano, 2007, 02, 157-167.	1.0	44

#	Article	IF	CITATIONS
55	Dependence of Raman spectra <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msup><mml:mi>G</mml:mi><mml:mo>′</mml:mo> </mml:msup></mml:math> band intensity on metallicity of single-wall carbon nanotubes. Physical Review B, 2007, 76, .	3.2	67
56	Enhancement of Conductivity by Diameter Control of Polyimide-Based Electrospun Carbon Nanofibers. Journal of Physical Chemistry B, 2007, 111, 11350-11353.	2.6	81
57	Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films. Journal of the American Chemical Society, 2007, 129, 7758-7759.	13.7	874
58	Effect of Different Concentrations of Nitric Acid on the Conductivity of Single-Walled Carbon Nanotube Transparent Films. Advanced Materials Research, 0, 658, 3-7.	0.3	8
59	Effects of Carboxyl Functionalized Carbon Nanotube on the Tensile Strength and Wear Resistance of Epoxy Composites. Materials Science Forum, 0, 809-810, 175-179.	0.3	0
60	Enhancement of Hydrophobility and Thermal Property of Graphene Oxide by Paratoluidine Chemical Functionalization. Materials Science Forum, 0, 809-810, 243-247.	0.3	0