Didier Mondelain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The HITRAN2020 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 277, 107949.	2.3	770
2	Measurements of the water vapor continuum absorption by OFCEAS at 3.50 µm and 2.32 µm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278, 108004.	2.3	6
3	Characterization of the H2O+CO2 continuum within the infrared transparency windows. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 282, 108119.	2.3	5
4	Simultaneous collision-induced transitions in H2O+CO2 gas mixtures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 285, 108162.	2.3	1
5	CRDS measurements of air-broadened lines in the 1.6 µm band of 12CO2: Line shape parameters with their temperature dependence. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 288, 108267.	2.3	4
6	The binary absorption coefficients for H2Â+ÂCO2 mixtures in the 2.12–2.35µm spectral region determined by CRDS and by semi-empirical calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 260, 107454.	2.3	4
7	Validation of spectroscopic data in the 1.27 µm spectral region by comparisons with ground-based atmospheric measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 261, 107495.	2.3	4
8	Temperature Dependence of the Collisionâ€Induced Absorption Band of O ₂ Near 1.27µm. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034860.	3.3	6
9	High sensitivity spectroscopy of the O2 band at 1.27 µm: (I) pure O2 line parameters above 7920 cmâ~'1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 241, 106653.	2.3	30
10	High sensitivity spectroscopy of the O2 band at 1.27µm: (II) air-broadened line profile parameters. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 240, 106673.	2.3	11
11	The water vapor foreign-continuum in the 1.6µm window by CRDS at room temperature. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 246, 106923.	2.3	6
12	Transition frequencies in the (2-0) band of D2 with MHz accuracy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107020.	2.3	13
13	Accurate absorption spectroscopy of water vapor near 1.64â€ [−] µm in support of the MEthane Remote Lldar missioN (MERLIN). Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 235, 332-342.	2.3	18
14	The water vapour self- and foreign-continua in the 1.6µm and 2.3µm windows by CRDS at room temperature. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 227, 230-238.	2.3	15
15	Accurate Laboratory Measurement of the O ₂ Collisionâ€Induced Absorption Band Near 1.27Âμm. Journal of Geophysical Research D: Atmospheres, 2019, 124, 414-423.	3.3	14
16	High sensitivity CRDS of CO 2 in the 1.74†µm transparency window. A validation test for the spectroscopic databases. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 207, 95-103.	2.3	17
17	Analysis and theoretical modeling of the 18O enriched carbon dioxide spectrum by CRDS near 1.74â€ [–] µm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 217, 73-85.	2.3	12
18	The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0â€ [−] µm. Atmospheric Measurement Techniques, 2018, 11, 2159-2171.	3.1	37

DIDIER MONDELAIN

#	Article	IF	CITATIONS
19	Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921 cmâ^'1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 206-212.	2.3	37
20	The CO2 absorption continuum by high pressure CRDS in the 1.74 µm window. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203, 530-537.	2.3	10
21	Water vapor self-continuum absorption measurements in the 4.0 and 2.1†µm transparency windows. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 201, 171-179.	2.3	26
22	The CO2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 187, 38-43.	2.3	15
23	Sub-MHz accuracy measurement of the S(2) 2–0 transition frequency of D2 by Comb-Assisted Cavity Ring Down spectroscopy. Journal of Molecular Spectroscopy, 2016, 326, 5-8.	1.2	48
24	A spectroscopic database for water vapor between 5850 and 8340 cmâ^'1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 179, 198-216.	2.3	26
25	Accurate laboratory determination of the nearâ€infrared water vapor selfâ€continuum: A test of the MT_CKD model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,180.	3.3	30
26	The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases. Journal of Molecular Spectroscopy, 2016, 327, 193-208.	1.2	42
27	Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 <i>$1/4$ </i>) atmospheric window. Journal of Chemical Physics, 2015, 143, 134304.	3.0	24
28	The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm. Physical Chemistry Chemical Physics, 2015, 17, 17762-17770.	2.8	27
29	High pressure Cavity Ring Down Spectroscopy: Application to the absorption continuum of CO2 near 1.7µm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 167, 97-104.	2.3	15
30	Temperature dependence of the water vapor selfâ€continuum by cavity ringâ€down spectroscopy in the 1.6 µm transparency window. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5625-5639.	3.3	25
31	The water vapour self-continuum by CRDS at room temperature in the 1.6µm transparency window. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130, 381-391.	2.3	47