Viktor E Volchkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387686/publications.pdf

Version: 2024-02-01

83 papers 8,496 citations

41258 49 h-index 83 g-index

87 all docs

87 docs citations

87 times ranked

6087 citing authors

#	Article	IF	Citations
1	Structural Dynamics of the C-terminal X Domain of Nipah and Hendra Viruses Controls the Attachment to the C-terminal Tail of the Nucleocapsid Protein. Journal of Molecular Biology, 2022, 434, 167551.	2.0	3
2	Structural Description of the Nipah Virus Phosphoprotein and Its Interaction with STAT1. Biophysical Journal, 2020, 118, 2470-2488.	0.2	28
3	Involvement of Surfactant Protein D in Ebola Virus Infection Enhancement via Glycoprotein Interaction. Viruses, 2019, 11, 15.	1.5	10
4	Filovirus proteins for antiviral drug discovery: Structure/function of proteins involved in assembly and budding. Antiviral Research, 2018, 150, 183-192.	1.9	18
5	Mannoside Glycolipid Conjugates Display Antiviral Activity Against Ebola Virus. Journal of Infectious Diseases, 2018, 218, S666-S671.	1.9	O
6	Proteolytic Processing of Filovirus Glycoproteins., 2018,, 99-108.		3
7	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	13.5	173
8	Human transmission of Ebola virus. Current Opinion in Virology, 2017, 22, 51-58.	2.6	25
9	Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses. Viruses, 2017, 9, 106.	1.5	22
10	Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathogens, 2017, 13, e1006610.	2.1	56
11	Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein. Journal of Virology, 2016, 90, 5256-5269.	1.5	24
12	Anti-EBOV GP IgGs Lacking $\hat{l}\pm 1$ -3-Galactose and Neu5Gc Prolong Survival and Decrease Blood Viral Load in EBOV-Infected Guinea Pigs. PLoS ONE, 2016, 11, e0156775.	1.1	10
13	Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication. Viruses, 2015, 7, 6233-6240.	1.5	82
14	Characterization of a Novel Neutralizing Monoclonal Antibody Against Ebola Virus GP. Journal of Infectious Diseases, 2015, 212, S372-S378.	1.9	20
15	RNA Editing of the GP Gene of Ebola Virus is an Important Pathogenicity Factor. Journal of Infectious Diseases, 2015, 212, S226-S233.	1.9	32
16	Ebola Virus GP Gene Polyadenylation Versus RNA Editing. Journal of Infectious Diseases, 2015, 212, S191-S198.	1.9	12
17	Entry of Ebola Virus is an Asynchronous Process. Journal of Infectious Diseases, 2015, 212, S199-S203.	1.9	2
18	Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity. Journal of Infectious Diseases, 2015, 212, S322-S328.	1.9	20

#	Article	IF	Citations
19	Virus nomenclature below the species level: a standardized nomenclature for filovirus strains and variants rescued from cDNA. Archives of Virology, 2014, 159, 1229-37.	0.9	59
20	Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names. Viruses, 2014, 6, 3663-3682.	1.5	49
21	Shed GP of Ebola Virus Triggers Immune Activation and Increased Vascular Permeability. PLoS Pathogens, 2014, 10, e1004509.	2.1	145
22	Marburgvirus Hijacks Nrf2-Dependent Pathway by Targeting Nrf2-Negative Regulator Keap 1. Cell Reports, 2014, 6, 1026-1036.	2.9	77
23	Discussions and decisions of the 2012–2014 International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group, January 2012–June 2013. Archives of Virology, 2014, 159, 821-830.	0.9	85
24	Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. Nature Structural and Molecular Biology, 2014, 21, 754-759.	3.6	119
25	Surface glycoproteins of the recently identified African Henipavirus promote viral entry and cell fusion in a range of human, simian and bat cell lines. Virus Research, 2014, 181, 77-80.	1.1	14
26	Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 1425-1432.	0.9	54
27	Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae. Archives of Virology, 2013, 158, 301-311.	0.9	99
28	Nonstructural Nipah Virus C Protein Regulates both the Early Host Proinflammatory Response and Viral Virulence. Journal of Virology, 2012, 86, 10766-10775.	1.5	57
29	Genomic RNA Editing and Its Impact on Ebola Virus Adaptation During Serial Passages in Cell Culture and Infection of Guinea Pigs. Journal of Infectious Diseases, 2011, 204, S941-S946.	1.9	96
30	The Human Metapneumovirus Matrix Protein Stimulates the Inflammatory Immune Response In Vitro. PLoS ONE, 2011, 6, e17818.	1.1	13
31	Kunjin Virus Replicon-Based Vaccines Expressing Ebola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection. Journal of Infectious Diseases, 2011, 204, S1060-S1065.	1.9	35
32	Ebolavirus î"-Peptide Immunoadhesins Inhibit Marburgvirus and Ebolavirus Cell Entry. Journal of Virology, 2011, 85, 8502-8513.	1.5	41
33	VP24 Is a Molecular Determinant of Ebola Virus Virulence in Guinea Pigs. Journal of Infectious Diseases, 2011, 204, S1011-S1020.	1.9	69
34	Conserved Proline-Rich Region of Ebola Virus Matrix Protein VP40 Is Essential for Plasma Membrane Targeting and Virus-Like Particle Release. Journal of Infectious Diseases, 2011, 204, S884-S891.	1.9	25
35	Ebola Virus Failure to Stimulate Plasmacytoid Dendritic Cell Interferon Responses Correlates With Impaired Cellular Entry. Journal of Infectious Diseases, 2011, 204, S973-S977.	1.9	16
36	Role of VP30 Phosphorylation in the Ebola Virus Replication Cycle. Journal of Infectious Diseases, 2011, 204, S934-S940.	1.9	51

#	Article	IF	Citations
37	Knockdown of Ebola Virus VP24 Impairs Viral Nucleocapsid Assembly and Prevents Virus Replication. Journal of Infectious Diseases, 2011, 204, S892-S896.	1.9	64
38	Unconventional Secretion of Ebola Virus Matrix Protein VP40. Journal of Infectious Diseases, 2011, 204, S833-S839.	1.9	19
39	Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Archives of Virology, 2010, 155, 2083-2103.	0.9	407
40	Mutations Abrogating VP35 Interaction with Double-Stranded RNA Render Ebola Virus Avirulent in Guinea Pigs. Journal of Virology, 2010, 84, 3004-3015.	1.5	135
41	Ebolavirus VP24 Binding to Karyopherins Is Required for Inhibition of Interferon Signaling. Journal of Virology, 2010, 84, 1169-1175.	1.5	122
42	Ebolavirus Glycoprotein GP Masks both Its Own Epitopes and the Presence of Cellular Surface Proteins. Journal of Virology, 2009, 83, 9596-9601.	1.5	72
43	Nipah Virus Edits Its P Gene at High Frequency To Express the V and W Proteins. Journal of Virology, 2009, 83, 3982-3987.	1.5	72
44	Nipah Virus Sequesters Inactive STAT1 in the Nucleus via a P Gene-Encoded Mechanism. Journal of Virology, 2009, 83, 7828-7841.	1.5	96
45	Role of Ebola Virus VP30 in Transcription Reinitiation. Journal of Virology, 2008, 82, 12569-12573.	1.5	7 3
46	Characterization of Marburg virus glycoprotein in viral entry. Virology, 2007, 358, 79-88.	1.1	57
47	Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virology Journal, 2006, 3, 70.	1.4	57
48	Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. Journal of General Virology, 2006, 87, 1247-1257.	1.3	74
49	Rescue of Recombinant Marburg Virus from cDNA Is Dependent on Nucleocapsid Protein VP30. Journal of Virology, 2006, 80, 1038-1043.	1.5	70
50	Ebola Virus VP24 Binds Karyopherin $\hat{l}\pm 1$ and Blocks STAT1 Nuclear Accumulation. Journal of Virology, 2006, 80, 5156-5167.	1.5	412
51	VP40 Octamers Are Essential for Ebola Virus Replication. Journal of Virology, 2005, 79, 1898-1905.	1.5	104
52	Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Medicine, 2005 , 11 , 786 - 790 .	15.2	607
53	Polymorphism of Filovirus Glycoproteins. Advances in Virus Research, 2005, 64, 359-381.	0.9	18
54	Properties of Replication-Competent Vesicular Stomatitis Virus Vectors Expressing Glycoproteins of Filoviruses and Arenaviruses. Journal of Virology, 2004, 78, 5458-5465.	1.5	327

#	Article	IF	Citations
55	Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO Journal, 2004, 23, 2175-2184.	3.5	149
56	Expression Strategy and Functions of the Filoviral Glycoproteins. , 2002, , 225-251.		0
57	Recovery of Infectious Ebola Virus from Complementary DNA: RNA Editing of the GP Gene and Viral Cytotoxicity. Science, 2001, 291, 1965-1969.	6.0	272
58	Structure and function of the proteins of Marburg and Ebola viruses. , 2001, , 233-246.		1
59	Biosynthesis and role of filoviral glycoproteins. Journal of General Virology, 2001, 82, 2839-2848.	1.3	96
60	Crystallization and preliminary X-ray analysis of the matrix protein from Ebola virus. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 758-760.	2.5	20
61	Molecular Characterization of Guinea Pig-Adapted Variants of Ebola Virus. Virology, 2000, 277, 147-155.	1.1	140
62	Proteolytic Processing of Marburg Virus Glycoprotein. Virology, 2000, 268, 1-6.	1.1	102
63	Crystal structure of the matrix protein VP40 from Ebola virus. EMBO Journal, 2000, 19, 4228-4236.	3.5	158
64	Human asymptomatic Ebola infection and strong inflammatory response. Lancet, The, 2000, 355, 2210-2215.	6.3	369
65	Structural characterization and membrane binding properties of the matrix protein VP40 of ebola virus. Journal of Molecular Biology, 2000, 300, 103-112.	2.0	145
66	The Ebola virus VP35 protein functions as a type I IFN antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12289-12294.	3.3	442
67	Identification of Ebola virus sequences present as RNA or DNA in organs of terrestrial small mammals of the Central African Republic. Microbes and Infection, 1999, 1, 1193-1201.	1.0	108
68	Delta-Peptide Is the Carboxy-Terminal Cleavage Fragment of the Nonstructural Small Glycoprotein sGP of Ebola Virus. Virology, 1999, 265, 164-171.	1.1	93
69	A new Clethrionomys-derived hantavirus from Germany: evidence for distinct genetic sublineages of Puumala viruses in Western Europe. Virus Research, 1999, 61, 101-112.	1.1	25
70	Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems. Journal of Virology, 1999, 73, 2333-2342.	1.5	425
71	Release of Viral Glycoproteins during Ebola Virus Infection. Virology, 1998, 245, 110-119.	1.1	99
72	The Nonstructural Small Glycoprotein sGP of Ebola Virus Is Secreted as an Antiparallel-Orientated Homodimer. Virology, 1998, 250, 408-414.	1.1	97

#	Article	IF	CITATION
73	Two strings to the bow of Ebola virus. Nature Medicine, 1998, 4, 388-389.	15.2	9
74	Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5762-5767.	3.3	453
75	Emergence of Subtype Zaire Ebola Virus in Gabon. Virology, 1997, 232, 139-144.	1.1	31
76	Termini of All mRNA Species of Marburg Virus: Sequence and Secondary Structure. Virology, 1996, 223, 376-380.	1.1	60
77	The complete nucleotide sequence of the Popp (1967) strain of Marburg virus: a comparison with the Musoke (1980) strain. Archives of Virology, 1995, 140, 1589-1600.	0.9	59
78	GP mRNA of Ebola Virus Is Edited by the Ebola Virus Polymerase and by T7 and Vaccinia Virus Polymerases1. Virology, 1995, 214, 421-430.	1.1	349
79	Characterisation of morbilliviruses isolated from Lake Baikal seals (Phoca sibirica). Veterinary Microbiology, 1995, 44, 251-259.	0.8	72
80	A Comparison of the Nucleotide Sequences of Eastern and Western Equine Encephalomyelitis Viruses with Those of Other Alphaviruses and Related RNA Viruses. Virology, 1993, 197, 375-390.	1.1	89
81	The VP35 and VP40 proteins of filoviruses. FEBS Letters, 1993, 322, 41-46.	1.3	30
82	The GP-protein of Marburg virus contains the region similar to the †immunosuppressive domain†of oncogenic retrovirus P15E proteins. FEBS Letters, 1993, 323, 183-187.	1.3	41
83	The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Letters, 1992, 305, 181-184.	1.3	113