
Shuai Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387466/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supercoiling Structure-Based Design of a Trimeric Coiled-Coil Peptide with High Potency against HIV-1 and Human I²-Coronavirus Infection. Journal of Medicinal Chemistry, 2022, 65, 2809-2819.	2.9	9
2	A highly potent and stable pan-coronavirus fusion inhibitor as a candidate prophylactic and therapeutic for COVID-19 and other coronavirus diseases. Acta Pharmaceutica Sinica B, 2022, 12, 1652-1661.	5.7	24
3	Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant. Cell Research, 2022, 32, 404-406.	5.7	31
4	A Palmitic Acid-Conjugated, Peptide-Based pan-CoV Fusion Inhibitor Potently Inhibits Infection of SARS-CoV-2 Omicron and Other Variants of Concern. Viruses, 2022, 14, 549.	1.5	13
5	Coronavirus Entry Inhibitors. Advances in Experimental Medicine and Biology, 2022, 1366, 101-121.	0.8	3
6	A Modified Fibronectin Type III Domain-Conjugated, Long-Acting Pan-Coronavirus Fusion Inhibitor with Extended Half-Life. Viruses, 2022, 14, 655.	1.5	8
7	Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nature Microbiology, 2022, 7, 1063-1074.	5.9	63
8	Lipopeptide-based pan-CoV fusion inhibitors potently inhibit HIV-1 infection. Microbes and Infection, 2021, 23, 104840.	1.0	2
9	Structural and functional basis for pan-CoV fusion inhibitors against SARS-CoV-2 and its variants with preclinical evaluation. Signal Transduction and Targeted Therapy, 2021, 6, 288.	7.1	38
10	Repurposing of a clinically used anti-HPV agent to prevent and treat SARS-CoV-2 infection as an intranasal formulation. Signal Transduction and Targeted Therapy, 2021, 6, 318.	7.1	7
11	Pan-coronavirus fusion inhibitors as the hope for today and tomorrow. Protein and Cell, 2021, 12, 84-88.	4.8	31
12	25-Hydroxycholesterol-Conjugated EK1 Peptide with Potent and Broad-Spectrum Inhibitory Activity against SARS-CoV-2, Its Variants of Concern, and Other Human Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 11869.	1.8	16
13	Structure-based evidence for the enhanced transmissibility of the dominant SARS-CoV-2 B.1.1.7 variant (Alpha). Cell Discovery, 2021, 7, 109.	3.1	17
14	A non-ACE2 competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. Signal Transduction and Targeted Therapy, 2021, 6, 378.	7.1	26
15	Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27141-27147.	3.3	173
16	RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduction and Targeted Therapy, 2020, 5, 282.	7.1	149
17	Evaluating the Association of Clinical Characteristics With Neutralizing Antibody Levels in Patients Who Have Recovered From Mild COVID-19 in Shanghai, China. JAMA Internal Medicine, 2020, 180, 1356.	2.6	211
18	Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host and Microbe, 2020, 27, 891-898.e5.	5.1	227

Shuai Xia

#	Article	IF	CITATIONS
19	The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduction and Targeted Therapy, 2020, 5, 92.	7.1	263
20	An amphipathic peptide targeting the gp41 cytoplasmic tail kills HIV-1 virions and infected cells. Science Translational Medicine, 2020, 12, .	5.8	10
21	Broad-Spectrum Coronavirus Fusion Inhibitors to Combat COVID-19 and Other Emerging Coronavirus Diseases. International Journal of Molecular Sciences, 2020, 21, 3843.	1.8	37
22	Dynamic surveillance of SARS-CoV-2 shedding and neutralizing antibody in children with COVID-19. Emerging Microbes and Infections, 2020, 9, 1254-1258.	3.0	61
23	Development of oncolytic virotherapy: from genetic modification to combination therapy. Frontiers of Medicine, 2020, 14, 160-184.	1.5	40
24	Inhibition of SARS-CoV-2 (previously 2019-nCoV)Âinfection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research, 2020, 30, 343-355.	5.7	1,083
25	Sodium Copper Chlorophyllin Is Highly Effective against Enterovirus (EV) A71 Infection by Blocking Its Entry into the Host Cell. ACS Infectious Diseases, 2020, 6, 882-890.	1.8	14
26	Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes and Infections, 2020, 9, 382-385.	3.0	1,086
27	Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular and Molecular Immunology, 2020, 17, 765-767.	4.8	564
28	Inefficiency of Sera from Mice Treated with Pseudotyped SARS-CoV to Neutralize 2019-nCoV Infection. Virologica Sinica, 2020, 35, 340-343.	1.2	10
29	A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cellular and Molecular Immunology, 2020, 17, 554-554.	4.8	124
30	A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Science Advances, 2019, 5, eaav4580.	4.7	393
31	Erythromycin Estolate Inhibits Zika Virus Infection by Blocking Viral Entry as a Viral Inactivator. Viruses, 2019, 11, 1064.	1.5	13
32	IgG Fc-binding motif-conjugated HIV-1 fusion inhibitor exhibits improved potency and in vivo half-life: Potential application in combination with broad neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008082.	2.1	16
33	Potent MERS-CoV Fusion Inhibitory Peptides Identified from HR2 Domain in Spike Protein of Bat Coronavirus HKU4. Viruses, 2019, 11, 56.	1.5	31
34	Combining a Fusion Inhibitory Peptide Targeting the MERS-CoV S2 Protein HR1 Domain and a Neutralizing Antibody Specific for the S1 Protein Receptor-Binding Domain (RBD) Showed Potent Synergism against Pseudotyped MERS-CoV with or without Mutations in RBD. Viruses, 2019, 11, 31.	1.5	20
35	Discovery of Hydrocarbon-Stapled Short α-Helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fusion Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 2018-2026.	2.9	42
36	The Antihistamine Drugs Carbinoxamine Maleate and Chlorpheniramine Maleate Exhibit Potent Antiviral Activity Against a Broad Spectrum of Influenza Viruses. Frontiers in Microbiology, 2018, 9, 2643.	1.5	29

Shuai Xia

#	Article	IF	CITATIONS
37	De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery. Journal of Medicinal Chemistry, 2018, 61, 8734-8745.	2.9	41
38	Peptide-Based Membrane Fusion Inhibitors Targeting HCoV-229E Spike Protein HR1 and HR2 Domains. International Journal of Molecular Sciences, 2018, 19, 487.	1.8	63
39	Chemically Modified Human Serum Albumin Potently Blocks Entry of Ebola Pseudoviruses and Viruslike Particles. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	20
40	A Potent Germline-like Human Monoclonal Antibody Targets a pH-Sensitive Epitope on H7N9 Influenza Hemagglutinin. Cell Host and Microbe, 2017, 22, 471-483.e5.	5.1	48
41	Creating an Artificial Tail Anchor as a Novel Strategy To Enhance the Potency of Peptide-Based HIV Fusion Inhibitors. Journal of Virology, 2017, 91, .	1.5	25
42	Intranasal application of polyethyleneimine suppresses influenza virus infection in mice. Emerging Microbes and Infections, 2016, 5, 1-2.	3.0	9
43	Urgent development of effective therapeutic and prophylactic agents to control the emerging threat of Middle East respiratory syndrome (MERS). Emerging Microbes and Infections, 2015, 4, 1-2.	3.0	11
44	Protective Effect of Intranasal Regimens Containing Peptidic Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor Against MERS-CoV Infection. Journal of Infectious Diseases, 2015, 212, 1894-1903.	1.9	87
45	Intranasal Administration of Maleic Anhydride-Modified Human Serum Albumin for Pre-Exposure Prophylaxis of Respiratory Syncytial Virus Infection. Viruses, 2015, 7, 798-819.	1.5	11
46	Testing of Middle East Respiratory Syndrome Coronavirus Replication Inhibitors for the Ability To Block Viral Entry. Antimicrobial Agents and Chemotherapy, 2015, 59, 742-744.	1.4	41
47	Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Research, 2014, 194, 200-210.	1.1	100