Lijun Chai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Description of a New Species of Sulcospira (Gastropoda: Pachychilidae) From Guangxi, China Based on Morphology and Molecular Evidence. Zoological Science, 2022, 39, 219-224.	0.7	1
2	Structural variation and parallel evolution of apomixis in citrus during domestication and diversification. National Science Review, 2022, 9, .	9.5	19
3	Chlorophyll retention reduces storability and pathogen defense in a novel citrus brown flavedo mutant. Postharvest Biology and Technology, 2022, 192, 112006.	6.0	5
4	Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. Journal of Experimental Botany, 2021, 72, 3137-3154.	4.8	53
5	Citrus transcription factor CsHB5 regulates abscisic acid biosynthetic genes and promotes senescence. Plant Journal, 2021, 108, 151-168.	5.7	15
6	Storage with apple fruit to improve peel color and maintain freshness of Newhall navel orange. Scientia Horticulturae, 2021, 287, 110246.	3.6	6
7	Downregulated expression of <i>S</i> 2 <i>-RNase</i> attenuates self-incompatibility in "Guiyou No. 1― pummelo. Horticulture Research, 2021, 8, 199.	6.3	12
8	Genetic background of the citrus landrace †̃Huarongdao Zhoupigan' revealed by simple sequence repeat marker and genomic analyses. Scientia Horticulturae, 2021, 289, 110456.	3.6	3
9	Evolution of self-compatibility by a mutant Sm-RNase in citrus. Nature Plants, 2020, 6, 131-142.	9.3	85
10	Citrus Reproductive Biology from Flowering to Fruiting. Compendium of Plant Genomes, 2020, , 167-176.	0.5	2
11	Genetic Resources of Citrus and Related Genera. Compendium of Plant Genomes, 2020, , 23-31.	0.5	3
12	Natural Variation in CCD4 Promoter Underpins Species-Specific Evolution of Red Coloration in Citrus Peel. Molecular Plant, 2019, 12, 1294-1307.	8.3	102
13	Genome sequencing and <scp>CRISPR</scp> /Cas9 gene editing of an early flowering Miniâ€Citrus (<i>Fortunella hindsii</i>). Plant Biotechnology Journal, 2019, 17, 2199-2210.	8.3	90
14	SLAF-Based Construction of a High-Density Genetic Map and Its Application in QTL Mapping of Carotenoids Content in Citrus Fruit. Journal of Agricultural and Food Chemistry, 2019, 67, 994-1002.	5.2	27
15	The Citrus Transcription Factor CsMADS6 Modulates Carotenoid Metabolism by Directly Regulating Carotenogenic Genes. Plant Physiology, 2018, 176, 2657-2676.	4.8	184
16	Reproduction in woody perennial Citrus: an update on nucellar embryony and self-incompatibility. Plant Reproduction, 2018, 31, 43-57.	2.2	38
17	Molecular phylogeography and population evolution analysis of Citrus ichangensis (Rutaceae). Tree Genetics and Genomes, 2017, 13, 1.	1.6	15
18	Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Molecular Genetics and Genomics, 2017, 292, 325-341.	2.1	29

Lijun Chai

#	Article	IF	CITATIONS
19	MAP Kinase PrMPK9-1 Contributes to the Self-Incompatibility Response. Plant Physiology, 2017, 174, 1226-1237.	4.8	35
20	Effects of exogenous abscisic acid on the expression of citrus fruit ripening-related genes and fruit ripening. Scientia Horticulturae, 2016, 201, 175-183.	3.6	60
21	A Novel Citrus Rootstock Tolerant to Iron Deficiency in Calcareous Soil. Journal of the American Society for Horticultural Science, 2016, 141, 112-118.	1.0	12
22	De Novo Transcriptome Assembly of Pummelo and Molecular Marker Development. PLoS ONE, 2015, 10, e0120615.	2.5	26
23	Genetic diversity and phylogenetic relationships of citron (Citrus medica L.) and its relatives in southwest China. Tree Genetics and Genomes, 2015, 11, 1.	1.6	22
24	Parentage analysis of natural citrus hybrid †Zhelong Zhoupigan' based on nuclear and chloroplast SSR markers. Scientia Horticulturae, 2015, 186, 24-30.	3.6	7
25	Selection of reliable reference genes for gene expression studies using quantitative real-time PCR in navel orange fruit development and pummelo floral organs. Scientia Horticulturae, 2014, 176, 180-188.	3.6	29
26	An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. Journal of Experimental Botany, 2014, 65, 1651-1671.	4.8	129
27	Transferability, polymorphism and effectiveness for genetic mapping of the Pummelo (Citrus grandis) Tj ETQq1	1 0,78431	4 rgBT /Overl
28	Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus. Molecular Biology Reports, 2012, 39, 5373-5386.	2.3	41
29	Generation, functional analysis and utility of Citrus grandis EST from a flower-derived cDNA library. Molecular Biology Reports, 2012, 39, 7221-7235.	2.3	14
30	The Papaver Self-Incompatibility Pollen S-Determinant, PrpS, Functions in Arabidopsis thaliana. Current Biology, 2012, 22, 154-159.	3.9	40
31	Comparative analysis of genetic diversity in Citrus germplasm collection using AFLP, SSAP, SAMPL and SSR markers. Scientia Horticulturae, 2011, 129, 798-803.	3.6	51
32	CgSL2, an S-like RNase gene in â€~Zigui shatian' pummelo (Citrus grandis Osbeck), is involved in ovary senescence. Molecular Biology Reports, 2011, 38, 1-8.	2.3	32
33	Molecular analysis and expression of a floral organ-relative F-box gene isolated from â€~Zigui shatian' pummelo (Citrus grandis Osbeck). Molecular Biology Reports, 2011, 38, 4429-4436.	2.3	19
34	Self-sterility in the mutant â€~Zigui shatian' pummelo (Citrus grandis Osbeck) is due to abnormal post-zygotic embryo development and not self-incompatibility. Plant Cell, Tissue and Organ Culture, 2011, 104, 1-11.	2.3	29
35	Isolation, Characterization, and Expression Analysis of an SKP1-like Gene from â€~Shatian' Pummelo (Citrus grandis Osbeck). Plant Molecular Biology Reporter, 2010, 28, 569-577.	1.8	25
36	Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. Journal of Experimental Botany, 2009, 60, 801-813.	4.8	68