Jianping Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387247/publications.pdf

Version: 2024-02-01

471509 526287 46 893 17 27 h-index citations g-index papers 46 46 46 888 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biomass-derived carbon nanosheets coupled with MoO2/Mo2C electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 30959-30969.	7.1	14
2	Cr-doped SnO2 microrods adhering nanoparticles for enhanced triethylamine sensing performance. Materials Letters, 2022, 312, 131684.	2.6	11
3	Reviewâ€"Nanostructural ZnO-Based Electrochemical Sensor for Environmental Application. Journal of the Electrochemical Society, 2022, 169, 020573.	2.9	15
4	Controllable band structure of ZnO/g-C3N4 aggregation to enhance gas sensing for the dimethylamine detection. Sensors and Actuators Reports, 2022, 4, 100084.	4.4	6
5	Engineering of Band Structure of Bismuth Selenide Ultrathin Nanosheets as Multifunctional Material for Photocatalytic Application. Advanced Materials Interfaces, 2022, 9, .	3.7	8
6	Modulation and self-assembly of nanoparticles into bismuth molybdate nanosheets as highly efficient photocatalysts for ciprofloxacin degradation. Environmental Science: Nano, 2022, 9, 2979-2989.	4.3	1
7	Size-Controllable Strategy of ZnO Micro/Nanorods for Electrochemical Detection of H ₂ O ₂ . Journal of the Electrochemical Society, 2021, 168, 027507.	2.9	8
8	Synthesis of Ultrathin and Gridâ€Structural Carbon Nanosheets Coupled with Mo ₂ C for Electrocatalytic Hydrogen Production. Chemistry - an Asian Journal, 2021, 16, 2107-2112.	3.3	13
9	Facile Preparation of Hierarchically Porous gâ€C ₃ N ₄ as Highâ€Performance Photocatalyst for Degradation of Methyl Violet Dye. ChemistrySelect, 2021, 6, 7130-7135.	1.5	7
10	Highly Dispersed Mo ₂ C Nanodots in Carbon Nanocages Derived from Moâ€Based Xerogel: Efficient Electrocatalysts for Hydrogen Evolution. Small Methods, 2021, 5, e2100334.	8.6	26
11	Design and Synthesis Strategies: 2D Materials for Electromagnetic Shielding/Absorbing. Chemistry - an Asian Journal, 2021, 16, 3817-3832.	3.3	17
12	Mo-chelate strategy for synthesizing ultrasmall Mo2C nanoparticles embedded in carbon nanosheets for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 31598-31607.	7.1	17
13	Hollow Hemispherical Carbon Microspheres with Mo ₂ C Nanoparticles Synthesized by Precursor Design: Effective Noble Metalâ€Free Catalysts for Dehydrogenation. Small Methods, 2020, 4, 1900597.	8.6	18
14	Simple self-assembly of 3D laminated CuO/SnO2 hybrid for the detection of triethylamine. Chinese Chemical Letters, 2020, 31, 2055-2058.	9.0	27
15	Mesoporous Carbon Nanotablets Coupled with Mo 2 C Nanoparticles: Combining Morphology and Structure to Realize High Activity for Efficient Hydrogen Evolution. ChemistrySelect, 2020, 5, 5974-5980.	1.5	13
16	A facile controllable self-assembly of 3D elliptical ZnO microspheres from 1D nanowires for effective detection of acetone. Materials Letters, 2020, 270, 127706.	2.6	17
17	Morphology evolution of ZnO by controlling solvent and electrochemical sensing of hexagonal nanotablets toward amines. Chinese Chemical Letters, 2020, 31, 2091-2094.	9.0	17
18	Ultrafine Mo ₂ C Nanoparticles Confined in 2D Meshlike Carbon Nanolayers for Effective Hydrogen Evolution. ChemCatChem, 2020, 12, 3195-3201.	3.7	18

#	Article	IF	CITATIONS
19	Regulating the Sensitivity and Operating Temperatures by Morphology Engineering of 2D ZnO Nanostructures and 3D ZnO Microstructures for the Detection of Organic-Amines. ACS Applied Nano Materials, 2019, 2, 5430-5439.	5.0	36
20	Highly sensitive and selective gas-phase ethanolamine sensor by doping sulfur into nanostructured ZnO. Sensors and Actuators B: Chemical, 2019, 296, 126633.	7.8	28
21	2D feather-shaped alumina slice as efficient Pd catalyst support for oxidation reaction of the low-concentration methane. Chemical Engineering Journal, 2019, 361, 1345-1351.	12.7	14
22	Enhanced properties of Pd/CeO ₂ -nanorods modified with alkaline-earth metals for catalytic oxidation of low-concentration methane. RSC Advances, 2018, 8, 38641-38647.	3.6	5
23	Efficient Catalysts for Cyclohexane Dehydrogenation Synthesized by Mo-Promoted Growth of 3D Block Carbon Coupled with Mo ₂ C. ACS Omega, 2018, 3, 10773-10780.	3.5	14
24	Facile self-assembly of SnO2 nanospheres for volatile amine gas sensing. Materials Letters, 2017, 186, 318-321.	2.6	14
25	Enhanced properties of solid solution (CeZr)O 2 modified with metal oxides for catalytic oxidation of low-concentration methane. Chinese Journal of Chemical Engineering, 2017, 25, 187-192.	3.5	5
26	Hierarchically Selfâ€Assembled Starâ€Shaped ZnO Microparticles for Electrochemical Sensing of Amines. Chemistry - A European Journal, 2016, 22, 8068-8073.	3.3	9
27	Size controlling preparation, adsorption and catalytic properties of silica microspheres. Chemical Research in Chinese Universities, 2016, 32, 843-847.	2.6	3
28	Structure and kinetic investigations of surface-stepped CeO 2 -supported Pd catalysts for low-concentration methane oxidation. Chemical Engineering Journal, 2016, 306, 745-753.	12.7	25
29	The effects of ceria morphology on the properties of Pd/ceria catalyst for catalytic oxidation of low-concentration methane. Journal of Materials Science, 2016, 51, 10917-10925.	3.7	35
30	Palladium catalyst supported on stair-like microstructural CeO 2 provides enhanced activity and stability for low-concentration methane oxidation. Applied Catalysis A: General, 2016, 524, 237-242.	4.3	13
31	Synthesis and Gas-sensing Performance of Column-shaped Zinc Oxide Doped with-graphene. Materials Today: Proceedings, 2016, 3, 345-349.	1.8	8
32	One-pot synthesis of mesoporous spherical SnO ₂ @graphene for high-sensitivity formaldehyde gas sensors. RSC Advances, 2016, 6, 25198-25202.	3.6	53
33	Size-controlled synthesis of SnO2 quantum dots and their gas-sensing performance. Applied Surface Science, 2015, 346, 256-262.	6.1	56
34	Self-Assembly of Gridlike Zinc Oxide Lamellae for Chemical-Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5870-5878.	8.0	40
35	Morphologies-controlling synthesis of silicalite-1 and its adsorption property. Materials Letters, 2015, 139, 494-497.	2.6	5
36	Catalytic performance of Mo ₂ C supported on onion-like carbon for dehydrogenation of cyclohexane. RSC Advances, 2014, 4, 53950-53953.	3.6	22

#	Article	IF	Citations
37	Controllable synthesis of prism- and lamella-like ZnO and their gas sensing. Materials Letters, 2014, 136, 427-430.	2.6	27
38	Surfactant-assisted synthesis of the pencil-like zinc oxide and its sensing properties. Materials Letters, 2013, 107, 259-261.	2.6	29
39	The short-channel function of hollow carbon nanoparticles as support in the dehydrogenation of cyclohexane. International Journal of Hydrogen Energy, 2013, 38, 5789-5795.	7.1	20
40	Facile synthesis of hexagonal brick-shaped SnO2 and its gas sensing toward triethylamine. Journal of Environmental Chemical Engineering, 2013, 1, 1380-1384.	6.7	53
41	Size-dependent thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: An experimental study (II). Journal of Chemical Thermodynamics, 2013, 65, 29-33.	2.0	9
42	Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: An theoretical and experimental study. Journal of Chemical Thermodynamics, 2012, 55, 218-224.	2.0	15
43	Effects of sizes of nano-copper oxide on the equilibrium constant and thermodynamic properties for the reaction in nanosystem. Journal of Chemical Thermodynamics, 2012, 45, 48-52.	2.0	26
44	A facile approach for synthesis and <i>in situ</i> modification of onionâ€like carbon with molybdenum carbide. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 878-881.	1.8	21
45	Hierarchical Porous Coreâ^'Shell Carbon Nanoparticles. Chemistry of Materials, 2009, 21, 1524-1530.	6.7	41
46	Effect of chemical treatment to hollow carbon nanoparticles (HCNP) on catalytic behaviors of the platinum catalysts. Applied Surface Science, 2008, 255, 2989-2993.	6.1	14