## Zhigang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1387230/publications.pdf Version: 2024-02-01



НІСАНС **7**НАНС

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Vps34 Inhibits Hepatocellular Carcinoma Invasion by Regulating Endosome-Lysosome Trafficking via<br>Rab7-RILP and Rab11. Cancer Research and Treatment, 2022, 54, 182-198.                                                      | 3.0 | 4         |
| 2  | Blocking ribosomal protein S6 phosphorylation inhibits podocyte hypertrophy and focal segmental glomerulosclerosis. Kidney International, 2022, , .                                                                             | 5.2 | 3         |
| 3  | Nuclear exclusion of YAP exacerbates podocyte apoptosis and disease progression in<br>Adriamycin-induced focal segmental glomerulosclerosis. Laboratory Investigation, 2021, 101, 258-270.                                      | 3.7 | 14        |
| 4  | Wnt8B, transcriptionally regulated by ZNF191, promotes cell proliferation of hepatocellular carcinoma via Wnt signaling. Cancer Science, 2021, 112, 629-640.                                                                    | 3.9 | 13        |
| 5  | Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI. Cell Death and Disease, 2021, 12, 754.                                                                    | 6.3 | 36        |
| 6  | Inhibition of LXR signaling by SULT2B1b promotes liver regeneration after partial hepatectomy in<br>mouse models of nonalcoholic fatty liver disease. American Journal of Physiology - Renal Physiology,<br>2020, 319, G87-G96. | 3.4 | 6         |
| 7  | Metformin effectively treats Tsc1 deletion-caused kidney pathology by upregulating AMPK phosphorylation. Cell Death Discovery, 2020, 6, 52.                                                                                     | 4.7 | 13        |
| 8  | Plakoglobin is involved in cytoskeletal rearrangement of podocytes under the regulation of UCH-L1.<br>Biochemical and Biophysical Research Communications, 2020, 529, 112-118.                                                  | 2.1 | 7         |
| 9  | Podocyte infolding glomerulopathy with undifferentiated connective tissue disease: a case report.<br>Ultrastructural Pathology, 2020, 44, 245-248.                                                                              | 0.9 | 4         |
| 10 | Porous Se@SiO <sub>2</sub> nanospheres attenuate ischemia/reperfusion (I/R)-induced<br>acute kidney injury (AKI) and inflammation by antioxidative stress. International Journal of<br>Nanomedicine, 2019, Volume 14, 215-229.  | 6.7 | 29        |
| 11 | TGF-β1 inhibits the autophagy of podocytes by activating mTORC1 in IgA nephropathy. Experimental Cell Research, 2019, 385, 111670.                                                                                              | 2.6 | 8         |
| 12 | High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Experimental Cell Research, 2019, 382, 111463.                                                                       | 2.6 | 43        |
| 13 | Inhibiting 4E-BP1 re-activation represses podocyte cell cycle re-entry and apoptosis induced by adriamycin. Cell Death and Disease, 2019, 10, 241.                                                                              | 6.3 | 8         |
| 14 | Molecular profiling of the biphasic components of hepatic carcinosarcoma by the use of targeted nextâ€generation sequencing. Histopathology, 2019, 74, 944-958.                                                                 | 2.9 | 6         |
| 15 | Pro-fibrotic effect of IL-6 via aortic adventitial fibroblasts indicates IL-6 as a treatment target in<br>Takayasu arteritis. Clinical and Experimental Rheumatology, 2018, 36, 62-72.                                          | 0.8 | 13        |
| 16 | Classification and Differential Diagnosis of Diabetic Nephropathy. Journal of Diabetes Research, 2017,<br>2017, 1-7.                                                                                                            | 2.3 | 159       |
| 17 | Clinicopathological features of idiopathic membranous nephropathy combined with IgA nephropathy:<br>a retrospective analysis of 9 cases. Diagnostic Pathology, 2016, 11, 86.                                                    | 2.0 | 16        |
| 18 | Usp2-69 overexpression slows down the progression of rat anti-Thy1.1 nephritis. Experimental and<br>Molecular Pathology, 2016, 101, 249-258.                                                                                    | 2.1 | 10        |

ZHIGANG ZHANG

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Glomeruli or interstitium targeted by inter-renal injections supplemented by electroporation: Still a useful tool in renal research. Journal of Gene Medicine, 2016, 18, 343-352.                             | 2.8 | 2         |
| 20 | Synergistic effects of c-Jun and SP1 in the promotion of TGFβ1-mediated diabetic nephropathy progression. Experimental and Molecular Pathology, 2016, 100, 441-450.                                           | 2.1 | 10        |
| 21 | The critical role of IL-6 in the pathogenesis of Takayasu arteritis. Clinical and Experimental<br>Rheumatology, 2016, 34, S21-7.                                                                              | 0.8 | 31        |
| 22 | NF-κB upregulates ubiquitin C-terminal hydrolase 1 in diseased podocytes in glomerulonephritis.<br>Molecular Medicine Reports, 2015, 12, 2893-2901.                                                           | 2.4 | 22        |
| 23 | A novel role of angiopoietin-like-3 associated with podocyte injury. Pediatric Research, 2015, 77, 732-739.                                                                                                   | 2.3 | 28        |
| 24 | Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-κB-mediated inflammatory response. Kidney International, 2014, 85, 333-343.                                                 | 5.2 | 190       |
| 25 | The Expression and Significance of Neuronal Iconic Proteins in Podocytes. PLoS ONE, 2014, 9, e93999.                                                                                                          | 2.5 | 17        |
| 26 | The regulation of the UCH-L1 gene by transcription factor NF-κB in podocytes. Cellular Signalling, 2013, 25, 1574-1585.                                                                                       | 3.6 | 23        |
| 27 | Human papillomavirus was not detected by PCR using multiple consensus primer sets in esophageal adenocarcinomas in Chinese patients. Journal of Medical Virology, 2013, 85, 1053-1057.                        | 5.0 | 10        |
| 28 | Neonatal Fc receptor stimulation induces ubiquitin c-terminal hydrolase-1 overexpression in<br>podocytes through activation of p38 mitogen-activated protein kinase. Human Pathology, 2012, 43,<br>1482-1490. | 2.0 | 9         |
| 29 | OTUB1 Overexpression in Mesangial Cells Is a Novel Regulator in the Pathogenesis of Glomerulonephritis through the Decrease of DCN Level. PLoS ONE, 2012, 7, e29654.                                          | 2.5 | 7         |
| 30 | Expression of USP2-69 in mesangial cells <i>in vivo</i> and <i>in vitro</i> . Pathology International, 2010, 60, 184-192.                                                                                     | 1.3 | 11        |
| 31 | Regulation of intracellular decorin via proteasome degradation in rat mesangial cells. Journal of<br>Cellular Biochemistry, 2010, 111, 1010-1019.                                                             | 2.6 | 10        |
| 32 | Role of cross-talk between the Smad2 and MAPK pathways in TGF-β1-induced collagen IV expression in mesangial cells. International Journal of Molecular Medicine, 2010, 26, 571-6.                             | 4.0 | 30        |
| 33 | UCHâ€L1 expression of podocytes in diseased glomeruli and <i>in vitro</i> . Journal of Pathology, 2009, 217, 642-653.                                                                                         | 4.5 | 38        |
| 34 | Overexpression of decorin induces apoptosis and cell growth arrest in cultured rat mesangial cells <i>in vitro</i> . Nephrology, 2008, 13, 607-615.                                                           | 1.6 | 28        |
| 35 | Detection of UCH-L1 Expression by Pre-embedding Immunoelectron Microscopy with Colloidal Gold<br>Labeling in Diseased Glomeruli. Ultrastructural Pathology, 2008, 32, 5-9.                                    | 0.9 | 7         |
| 36 | Regulation of the Stability of P-Glycoprotein by Ubiquitination. Molecular Pharmacology, 2004, 66, 395-403.                                                                                                   | 2.3 | 106       |