David I Heiman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1386981/david-i-heiman-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 62
 28,018
 61
 67

 papers
 citations
 h-index
 g-index

 67
 39,010
 27.1
 4.56

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
62	PANOPLY: a cloud-based platform for automated and reproducible proteogenomic data analysis. <i>Nature Methods</i> , 2021 , 18, 580-582	21.6	3
61	A proteogenomic portrait of lung squamous cell carcinoma. <i>Cell</i> , 2021 , 184, 4348-4371.e40	56.2	15
60	Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. <i>Cell</i> , 2020 , 182, 200-225.e35	56.2	139
59	Proteogenomic Characterization of Endometrial Carcinoma. <i>Cell</i> , 2020 , 180, 729-748.e26	56.2	122
58	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. <i>Cell</i> , 2020 , 183, 143	6- 4&.5 6	.e≱íl
57	Before and After: Comparison of Legacy and Harmonized TCGA Genomic Data CommonsbData. <i>Cell Systems</i> , 2019 , 9, 24-34.e10	10.6	64
56	A comprehensive genomic history of extinct and living elephants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E2566-E2574	11.5	86
55	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. <i>Cell</i> , 2018 , 173, 400-416.e11	56.2	1072
54	Comprehensive Characterization of Cancer Driver Genes and Mutations. <i>Cell</i> , 2018 , 173, 371-385.e18	56.2	854
53	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. <i>Cell</i> , 2018 , 173, 291-304.e6	56.2	888
52	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. <i>Cell</i> , 2018 , 173, 386-399	. e 5162.2	133
51	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. <i>Cell</i> , 2018 , 173, 305-320.e10	56.2	166
50	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. <i>Cell</i> , 2018 , 173, 338-354.e15	56.2	560
49	Oncogenic Signaling Pathways in The Cancer Genome Atlas. <i>Cell</i> , 2018 , 173, 321-337.e10	56.2	1124
48	Pathogenic Germline Variants in 10,389 Adult Cancers. <i>Cell</i> , 2018 , 173, 355-370.e14	56.2	342
47	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. <i>Cell Reports</i> , 2018 , 23, 282-296.e4	10.6	188
46	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. <i>Cell Reports</i> , 2018 , 23, 227-238.e3	10.6	235

(2018-2018)

45	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. <i>Cell Reports</i> , 2018 , 23, 194-212.e6	10.6	146
44	Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. <i>Cell Reports</i> , 2018 , 23, 297-312.e12	10.6	147
43	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. <i>Cell Reports</i> , 2018 , 23, 313-326.e5	10.6	295
42	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. <i>Cell Reports</i> , 2018 , 23, 181-193.e7	10.6	366
41	The Immune Landscape of Cancer. <i>Immunity</i> , 2018 , 48, 812-830.e14	32.3	1754
40	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. <i>Cell Reports</i> , 2018 , 23, 172-180.e3	10.6	66
39	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. <i>Cell Reports</i> , 2018 , 23, 213-	·2 26. @3	56
38	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. <i>Cell Reports</i> , 2018 , 23, 239-254.e6	10.6	405
37	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. <i>Cell Reports</i> , 2018 , 23, 255-269.e4	10.6	112
36	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. <i>Cell Reports</i> , 2018 , 23, 270-281.e3	10.6	121
35	The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell, 2018, 33, 244-258.e10	24.3	150
34	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. <i>Cell Systems</i> , 2018 , 6, 271-281.e7	10.6	320
33	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. <i>Cell Systems</i> , 2018 , 6, 282-300.e2	10.6	159
32	lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. <i>Cancer Cell</i> , 2018 , 33, 706-720.e9	24.3	275
31	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-6	8 9. ę3	377
30	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. <i>Cancer Cell</i> , 2018 , 33, 721-735.e	8 24.3	228
29	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. <i>Cancer Cell</i> , 2018 , 33, 690-705.e9	24.3	277
28	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. <i>Cancer Cell</i> , 2018 , 34, 211-224.e6	24.3	327

27	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-340	6 10.6	200
26	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-LSuperfamily. <i>Cell Systems</i> , 2018 , 7, 422-437.e7	10.6	85
25	Integrative Molecular Characterization of Malignant Pleural Mesothelioma. <i>Cancer Discovery</i> , 2018 , 8, 1548-1565	24.4	258
24	Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. <i>Cell Reports</i> , 2018 , 25, 1304-1317.e5	10.6	152
23	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. <i>Cancer Cell</i> , 2017 , 31, 181-193	24.3	350
22	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. <i>Cell</i> , 2017 , 169, 1327-1341.e23	56.2	1125
21	Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 2017, 31, 411-423	24.3	210
20	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. <i>Cell Reports</i> , 2017 , 18, 2780-2794	10.6	247
19	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. <i>Cancer Cell</i> , 2017 , 32, 204-220.e15	24.3	391
18	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-	2 03.g 1	3 896
17	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. <i>Cell</i> , 2017 , 171, 950-965.e28	56.2	451
16	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. <i>Cancer Cell</i> , 2016 , 29, 723-	·7 3.6 .3	324
15	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England Journal of Medicine</i> , 2015 , 372, 2481-98	59.2	1828
14	Contrasting host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes. <i>Nature Communications</i> , 2015 , 6, 7121	17.4	56
13	Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. <i>Science</i> , 2014 , 345, 1074-1079	33.3	246
12			2000
	The somatic genomic landscape of glioblastoma. <i>Cell</i> , 2013 , 155, 462-77	56.2	2900
11	Mutational heterogeneity in cancer and the search for new cancer-associated genes. <i>Nature</i> , 2013 , 499, 214-218		3616

LIST OF PUBLICATIONS

9	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. <i>Nature Genetics</i> , 2012 , 44, 1060-5	36.3	564
8	Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth. <i>Genome Research</i> , 2012 , 22, 2478-88	9.7	191
7	Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. <i>MBio</i> , 2012 , 3, e00259-12	7.8	162
6	Comparative functional genomics of the fission yeasts. <i>Science</i> , 2011 , 332, 930-6	33.3	364
5	The genome of the green anole lizard and a comparative analysis with birds and mammals. <i>Nature</i> , 2011 , 477, 587-91	50.4	478
4	Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. <i>PLoS Genetics</i> , 2011 , 7, e1002345	6	132
3	Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. <i>PLoS Pathogens</i> , 2011 , 7, e1002137	7.6	335
2	High-quality draft genome sequences of 28 Enterococcus sp. isolates. <i>Journal of Bacteriology</i> , 2010 , 192, 2469-70	3.5	65
1	Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. <i>Genome Research</i> , 2010 , 20, 938-46	9.7	140