Xian-Ming Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1386873/publications.pdf

Version: 2024-02-01

70	1,067	17 h-index	29
papers	citations		g-index
71	71	71	534
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 1179.	0.9	7
2	Efficient energy preserving Galerkin–Legendre spectral methods for fractional nonlinear Schrödinger equation with wave operator. Applied Numerical Mathematics, 2022, 172, 608-628.	2.1	8
3	A hybrid triangulation method for banded linear systems. Mathematics and Computers in Simulation, 2022, 194, 97-108.	4.4	1
4	A simpler GMRES algorithm accelerated by Chebyshev polynomials for computing PageRank. Journal of Computational and Applied Mathematics, 2022 , , 114395 .	2.0	1
5	A variant of the Power–Arnoldi algorithm for computing PageRank. Journal of Computational and Applied Mathematics, 2021, 381, 113034.	2.0	19
6	Preconditioners for all-at-once system from the fractional mobile/immobile advection–diffusion model. Journal of Applied Mathematics and Computing, 2021, 65, 669-691.	2.5	7
7	A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation. Mathematics and Computers in Simulation, 2021, 182, 1-24.	4.4	9
8	A fast implicit difference scheme for solving the generalized time–space fractional diffusion equations with variable coefficients. Numerical Methods for Partial Differential Equations, 2021, 37, 1136-1162.	3.6	19
9	Fast implicit difference schemes for timeâ€space fractional diffusion equations with the integral fractional Laplacian. Mathematical Methods in the Applied Sciences, 2021, 44, 441-463.	2.3	16
10	An efficient second-order energy stable BDF scheme for the space fractional Cahn–Hilliard equation. BIT Numerical Mathematics, 2021, 61, 1061-1092.	2.0	8
11	On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge-Kutta schemes for the space-fractional Allen-Cahn equation. Numerical Algorithms, 2021, 88, 1309-1336.	1.9	12
12	An adaptive Power-GArnoldi algorithm for computing PageRank. Journal of Computational and Applied Mathematics, 2021, 386, 113209.	2.0	5
13	Anderson Acceleration of the Arnoldi-Inout Method for Computing PageRank. Symmetry, 2021, 13, 636.	2.2	1
14	A Flexible Global GCRO-DR Method for Shifted Linear Systems and General Coupled Matrix Equations. Journal of Mathematics, 2021, 2021, 1-17.	1.0	1
15	A Preconditioning Technique for an All-at-once System from Volterra Subdiffusion Equations with Graded Time Steps. Journal of Scientific Computing, 2021, 88, 1.	2.3	32
16	A Preconditioned Variant of the Refined Arnoldi Method for Computing PageRank Eigenvectors. Symmetry, 2021, 13, 1327.	2.2	2
17	Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations. Computers and Mathematics With Applications, 2021, 94, 136-154.	2.7	9
18	Three-dimensional fractional total variation regularized tensor optimized model for image deblurring. Applied Mathematics and Computation, 2021, 404, 126224.	2.2	15

#	Article	IF	CITATIONS
19	An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order. Applied Mathematics Letters, 2021, 120, 107270.	2.7	37
20	Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods. Applied Mathematics and Computation, 2021, 408, 126360.	2.2	2
21	A low-rank Lie-Trotter splitting approach for nonlinear fractional complex Ginzburg-Landau equations. Journal of Computational Physics, 2021, 446, 110652.	3.8	10
22	Learning Discriminative Text Representation for Streaming Social Event Detection. IEEE Transactions on Knowledge and Data Engineering, 2021, , $1-1$.	5.7	2
23	Fast IIF–WENO Method on Non-uniform Meshes for Nonlinear Space-Fractional Convection–Diffusion–Reaction Equations. Journal of Scientific Computing, 2021, 89, 1.	2.3	3
24	A Fast Preconditioned Semi-Implicit Difference Scheme for Strongly Nonlinear Space-Fractional Diffusion Equations. Fractal and Fractional, 2021, 5, 230.	3.3	6
25	A Fast Second-Order Implicit Difference Method for Time-Space Fractional Advection-Diffusion Equation. Numerical Functional Analysis and Optimization, 2020, 41, 257-293.	1.4	6
26	A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel. Journal of Computational Physics, 2020, 417, 109576.	3.8	77
27	Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation. Applied Numerical Mathematics, 2020, 156, 346-363.	2.1	12
28	A Local Coupling Multitrace Domain Decomposition Method for Electromagnetic Scattering From Multilayered Dielectric Objects. IEEE Transactions on Antennas and Propagation, 2020, 68, 7099-7108.	5.1	15
29	Efficient variants of the CMRH method for solving a sequence of multi-shifted non-Hermitian linear systems simultaneously. Journal of Computational and Applied Mathematics, 2020, 375, 112788.	2.0	7
30	A Preconditioning Technique for All-at-Once System from the Nonlinear Tempered Fractional Diffusion Equation. Journal of Scientific Computing, 2020, 83, 1.	2.3	23
31	Fast implicit integration factor method for nonlinear space Riesz fractional reaction–diffusion equations. Journal of Computational and Applied Mathematics, 2020, 378, 112935.	2.0	11
32	Efficient Preconditioned Iterative Linear Solvers for 3-D Magnetostatic Problems Using Edge Elements. Advances in Applied Mathematics and Mechanics, 2020, 12, 301-318.	1.2	9
33	Compact implicit integration factor method for two-dimensional space-fractional advection-diffusion-reaction equations. Journal of Physics: Conference Series, 2020, 1592, 012048.	0.4	0
34	Off-diagonal low-rank preconditioner for difficult PageRank problems. Journal of Computational and Applied Mathematics, 2019, 346, 456-470.	2.0	10
35	Well-posedness of the fractional Ginzburg–Landau equation. Applicable Analysis, 2019, 98, 2545-2558.	1.3	8
36	An implicit integration factor method for a kind of spatial fractional diffusion equations. Journal of Physics: Conference Series, 2019, 1324, 012030.	0.4	0

#	Article	IF	Citations
37	A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time–space fractional diffusion equation. Journal of Computational and Applied Mathematics, 2019, 362, 99-115.	2.0	11
38	Numerical Gradient Schemes for Heat Equations Based on the Collocation Polynomial and Hermite Interpolation. Mathematics, 2019, 7, 93.	2.2	4
39	A flexible and adaptive Simpler GMRES with deflated restarting for shifted linear systems. Computers and Mathematics With Applications, 2019, 78, 997-1007.	2.7	7
40	A Breakdown-Free Block COCG Method for Complex Symmetric Linear Systems with Multiple Right-Hand Sides. Symmetry, 2019, 11, 1302.	2.2	2
41	A fast linearized conservative finite element method for the strongly coupled nonlinear fractional SchrĶdinger equations. Journal of Computational Physics, 2018, 358, 256-282.	3.8	155
42	Restarted Hessenberg method for solving shifted nonsymmetric linear systems. Journal of Computational and Applied Mathematics, 2018, 331, 166-177.	2.0	21
43	Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems. Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 472-487.	3.3	10
44	A High-Order Accurate Numerical Scheme for the Caputo Derivative with Applications to Fractional Diffusion Problems. Numerical Functional Analysis and Optimization, 2018, 39, 600-622.	1.4	30
45	Multipreconditioned GMRES for simulating stochastic automata networks. Open Mathematics, 2018, 16, 986-998.	1.0	0
46	The Weighted Arithmetic Mean–Geometric Mean Inequality is Equivalent to the Hölder Inequality. Symmetry, 2018, 10, 380.	2.2	7
47	Improved delay-probability-dependent results for stochastic neural networks with randomly occurring uncertainties and multiple delays. International Journal of Systems Science, 2018, 49, 2039-2059.	5.5	7
48	Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation. Journal of Scientific Computing, 2017, 72, 957-985.	2.3	84
49	Non-fragile asynchronous H â^ž control for uncertain stochastic memory systems with Bernoulli distribution. Applied Mathematics and Computation, 2017, 312, 109-128.	2.2	18
50	Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations. Applied Mathematics Letters, 2017, 68, 13-19.	2.7	35
51	An efficient elimination strategy for solving PageRank problems. Applied Mathematics and Computation, 2017, 298, 111-122.	2.2	21
52	Vector Extrapolation Based Landweber Method for Discrete Ill-Posed Problems. Mathematical Problems in Engineering, 2017, 2017, 1-8.	1.1	7
53	TWO CSCS-BASED ITERATION METHODS FOR SOLVING ABSOLUTE VALUE EQUATIONS. Journal of Applied Analysis and Computation, 2017, 7, 1336-1356.	0.5	7
54	Fast permutation preconditioning for fractional diffusion equations. SpringerPlus, 2016, 5, 1109.	1.2	2

#	Article	IF	Citations
55	BiCGCR2: A new extension of conjugate residual method for solving non-Hermitian linear systems. Journal of Computational and Applied Mathematics, 2016, 305, 115-128.	2.0	1
56	Quadratic spline collocation method for the time fractional subdiffusion equation. Applied Mathematics and Computation, 2016, 276, 252-265.	2.2	34
57	Fast iterative solvers for numerical simulations of scattering and radiation on thin wires. Journal of Electromagnetic Waves and Applications, 2015, 29, 1281-1296.	1.6	8
58	A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian linear systems. Computers and Mathematics With Applications, 2015, 70, 3019-3031.	2.7	11
59	The SCBiCG class of algorithms for complex symmetric linear systems with applications in several electromagnetic model problems. Computer Physics Communications, 2015, 191, 52-64.	7.5	24
60	Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings. Applied Mathematics Letters, 2015, 48, 14-22.	2.7	8
61	On <mml:math altimg="si43.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations. Applied Mathematics Letters. 2015. 42. 53-58.	2.7	22
62	Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. Journal of Computational and Applied Mathematics, 2015, 277, 73-86.	2.0	38
63	Some Refinements and Generalizations of I. Schur Type Inequalities. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	0
64	Quasi-Minimal Residual Variants of the COCG and COCR Methods for Complex Symmetric Linear Systems in Electromagnetic Simulations. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2859-2867.	4.6	23
65	Efficient preconditioner updates for unsymmetric shifted linear systems. Computers and Mathematics With Applications, 2014, 67, 1643-1655.	2.7	10
66	Circulant preconditioned iterative methods for peridynamic model simulation. Applied Mathematics and Computation, 2014, 248, 470-479.	2.2	11
67	BiCR-type methods for families of shifted linear systems. Computers and Mathematics With Applications, 2014, 68, 746-758.	2.7	12
68	On the symmetric doubly stochastic inverse eigenvalue problem. Linear Algebra and Its Applications, 2014, 445, 181-205.	0.9	16
69	Comment on "A note on the inverse eigenvalue problem for symmetric doubly stochastic matrices― Linear Algebra and Its Applications, 2013, 439, 2256-2262.	0.9	3
70	A Hessenberg-type algorithm for computing PageRank Problems. Numerical Algorithms, $0, 1$.	1.9	5