Xian-Ming Gu

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/1386873/publications.pdf
Version: 2024-02-01

2 Efficient energy preserving Galerkinâ€"Legendre spectral methods for fractional nonlinear SchrÃๆdinger equation with wave operator. Applied Numerical Mathematics, 2022, 172, 608-628.
$2.1 \quad 8$

A hybrid triangulation method for banded linear systems. Mathematics and Computers in Simulation,
3
A hybrid triangulation
$2022,194,97-108$.
$4.4 \quad 1$

A simpler GMRES algorithm accelerated by Chebyshev polynomials for computing PageRank. Journal of
$4 \quad$ A simpler GMRES algorithm accelerated by Chebyshev poly
$2.0 \quad 1$

5 A variant of the Powerâ€ "Arnoldi algorithm for computing PageRank. Journal of Computational and
$2.0 \quad 19$
Applied Mathematics, 2021, 381, 113034.

Preconditioners for all-at-once system from the fractional mobile/immobile advectionâ€"diffusion model. Journal of Applied Mathematics and Computing, 2021, 65, 669-691.
$2.5 \quad 7$

$$
7 \quad \text { A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion }
$$

equation. Mathematics and Computers in Simulation, 2021, 182, 1-24.
A fast implicit difference scheme for solving the generalized timeâ€"space fractional diffusion
8 equations with variable coefficients. Numerical Methods for Partial Differential Equations, 2021, 37,
3.6

1136-1162.
9 Fast implicit difference schemes for timeâ€space fractional diffusion equations with the integra
$9 \quad$ fractional Laplacian. Mathematical Methods in the Applied Sciences, 2021, 44, 441-463.

10 An efficient second-order energy stable BDF scheme for the space fractional Cahnâ€"Hilliard equation.
10 BIT Numerical Mathematics, 2021, 61, 1061-1092.
$2.0 \quad 8$
On the preserving of the maximum principle and energy stability of high-order implicit-explicit
Runge-Kutta schemes for the space-fractional Allen-Cahn equation. Numerical Algorithms, 2021, 88,

$1309-1336$. | 1.9 |
| :--- |

14 A Flexible Global GCRO-DR Method for Shifted Linear Systems and General Coupled Matrix Equations. Journal of Mathematics, 2021, 2021, 1-17.

Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations. Computers and Mathematics With Applications, 2021, 94, 136-154.

Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods. Applied Mathematics and Computation, 2021, 408, 126360.

Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional
27 nonlinear Riesz space-fractional reaction-diffusion equation. Applied Numerical Mathematics, 2020,156, 346-363.

A Local Coupling Multitrace Domain Decomposition Method for Electromagnetic Scattering From
5.1

2.0

11 Mathematics, 2019, 362, 99-115.

Numerical Gradient Schemes for Heat Equations Based on the Collocation Polynomial and Hermite Interpolation. Mathematics, 2019, 7, 93.
2.2

A flexible and adaptive Simpler GMRES with deflated restarting for shifted linear systems. Computers and Mathematics With Applications, 2019, 78, 997-1007.

A Breakdown-Free Block COCG Method for Complex Symmetric Linear Systems with Multiple Right-Hand Sides. Symmetry, 2019, 11, 1302.
2.2

A fast linearized conservative finite element method for the strongly coupled nonlinear fractional
SchrÃ τ dinger equations. Journal of Computational Physics, 2018, 358, 256-282.
3.8

Restarted Hessenberg method for solving shifted nonsymmetric linear systems. Journal of
Computational and Applied Mathematics, 2018, 331, 166-177.

Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems.
Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 472-487.
Block-accelerated aggregation multigrid for Markov chains with application to PageRa
Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 472-487.
3.3

10

A High-Order Accurate Numerical Scheme for the Caputo Derivative with Applications to Fractional Diffusion Problems. Numerical Functional Analysis and Optimization, 2018, 39, 600-622.

Multipreconditioned GMRES for simulating stochastic automata networks. Open Mathematics, 2018,
16, 986-998.

The Weighted Arithmetic Meanâ€"Geometric Mean Inequality is Equivalent to the HÃণlder Inequality.
Symmetry, 2018, 10, 380.
Improved delay-probability-dependent results for stochastic neural networks with randomly
47 occurring uncertainties and multiple delays. International Journal of Systems Science, 2018, 49,
5.5 2039-2059.

48 Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convectionấ"'Diffusion Equation. Journal of Scientific Computing, 2017, 72, 957-985.
2.3

84
-
Non-fragile asynchronous H â^ž control for uncertain stochastic memory systems with Bernoulli distribution. Applied Mathematics and Computation, 2017, 312, 109-128.

Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations. Applied Mathematics Letters, 2017, 68, 13-19.

An efficient elimination strategy for solving PageRank problems. Applied Mathematics and
Computation, 2017, 298, 111-122.

Vector Extrapolation Based Landweber Method for Discrete III-Posed Problems. Mathematical
Problems in Engineering, 2017, 2017, 1-8.

TWO CSCS-BASED ITERATION METHODS FOR SOLVING ABSOLUTE VALUE EQUATIONS. Journal of Applied
Analysis and Computation, 2017, 7, 1336-1356.
0.5
1.1

7
55
BiCGCR2: A new extension of conjugate residual method for solving non-Hermitian linear systems. Journal of Computational and Applied Mathematics, 2016, 305, 115-128.
2.0

1

Quadratic spline collocation method for the time fractional subdiffusion equation. Applied
2.2 Mathematics and Computation, 2016, 276, 252-265.

34
Fast iterative solvers for numerical simulations of scattering and radiation on thin wires. Journal of
Electromagnetic Waves and Applications, 2015, 29, 1281-1296.

58 A hybridized iterative algorithm of the BiCORSTAB and GPBiCOR methods for solving non-Hermitian
2.7

11 linear systems. Computers and Mathematics With Applications, 2015, 70, 3019-3031.

The SCBiCG class of algorithms for complex symmetric linear systems with applications in several
electromagnetic model problems. Computer Physics Communications, 2015, 191, 52-64.
$7.5 \quad 24$

60 Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and
skew-Hermitian splittings. Applied Mathematics Letters, 2015, 48, 14-22.

| 61 | On <mml:math xmlns:mml="http:\||www.w3.org/1998/Math/MathML" altimg="si43.gif" display="inline" overflow="scroll">mml:mik</mml:mi> </mml:math>-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations. Applied Mathematics Letters. 2015. 42, 53-58. | 2.7 | 22 |
| :---: | :---: | :---: | :---: |
| 62 | Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. Journal of Computational and Applied Mathematics, 2015, 277, 73-86. | 2.0 | 38 |
| 63 | Some Refinements and Generalizations of I. Schur Type Inequalities. Scientific World Journal, The, 2014, 2014, 1-8. | 2.1 | 0 |

Quasi-Minimal Residual Variants of the COCG and COCR Methods for Complex Symmetric Linear
64 Systems in Electromagnetic Simulations. IEEE Transactions on Microwave Theory and Techniques, 2014,
4.6

23 62, 2859-2867.

$65 \quad$Efficient preconditioner updates for unsymmetric shifted linear systems. Computers and Mathematics With Applications, 2014, 67, 1643-1655.	
$66 \quad$Circulant preconditioned iterative methods for peridynamic model simulation. Applied Mathematics and Computation, 2014, 248, 470-479.	
BiCR-type methods for families of shifted linear systems. Computers and Mathematics With Applications, 2014, 68, 746-758.	10

68 On the symmetric doubly stochastic inverse eigenvalue problem. Linear Algebra and Its Applications,

