
Greg Asner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1386132/publications.pdf Version: 2024-02-01

CDEC ASNED

#	Article	IF	CITATIONS
1	Global Consequences of Land Use. Science, 2005, 309, 570-574.	6.0	9,451
2	Nitrogen Cycles: Past, Present, and Future. Biogeochemistry, 2004, 70, 153-226.	1.7	4,203
3	The velocity of climate change. Nature, 2009, 462, 1052-1055.	13.7	1,930
4	PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment, 2009, 113, S56-S66.	4.6	1,178
5	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
6	Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sensing of Environment, 1998, 64, 234-253.	4.6	948
7	Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields. Science, 2003, 299, 1032-1032.	6.0	893
8	GRAZING SYSTEMS, ECOSYSTEM RESPONSES, AND GLOBAL CHANGE. Annual Review of Environment and Resources, 2004, 29, 261-299.	5.6	886
9	Selective Logging in the Brazilian Amazon. Science, 2005, 310, 480-482.	6.0	844
10	PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 2008, 112, 3030-3043.	4.6	773
11	Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 2003, 12, 191-205.	2.7	690
12	Land-use choices: balancing human needs and ecosystem function. Frontiers in Ecology and the Environment, 2004, 2, 249-257.	1.9	674
13	Dissolved Organic Carbon in Terrestrial Ecosystems: Synthesis and a Model. Ecosystems, 2001, 4, 29-48.	1.6	597
14	Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sensing of Environment, 2009, 113, S67-S77.	4.6	576
15	High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16738-16742.	3.3	568
16	Endmember variability in Spectral Mixture Analysis: A review. Remote Sensing of Environment, 2011, 115, 1603-1616.	4.6	536
17	Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment, 2009, 113, S78-S91.	4.6	478
18	A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 2019, 5, eaaw2869.	4.7	477

#	Article	IF	CITATIONS
19	An integrated panâ€tropical biomass map using multiple reference datasets. Global Change Biology, 2016, 22, 1406-1420.	4.2	469
20	Moisture Effects on Soil Reflectance. Soil Science Society of America Journal, 2002, 66, 722-727.	1.2	452
21	Changing Drivers of Deforestation and New Opportunities for Conservation. Conservation Biology, 2009, 23, 1396-1405.	2.4	446
22	Using Imaging Spectroscopy to Study Ecosystem Processes and Properties. BioScience, 2004, 54, 523.	2.2	441
23	Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers in Ecology and the Environment, 2007, 5, 25-32.	1.9	439
24	Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation, 2008, 141, 1745-1757.	1.9	408
25	A Contemporary Assessment of Change in Humid Tropical Forests. Conservation Biology, 2009, 23, 1386-1395.	2.4	401
26	Cloud cover in Landsat observations of the Brazilian Amazon. International Journal of Remote Sensing, 2001, 22, 3855-3862.	1.3	382
27	CONTROLS OVER FOLIAR N:P RATIOS IN TROPICAL RAIN FORESTS. Ecology, 2007, 88, 107-118.	1.5	375
28	Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 2008, 112, 3958-3970.	4.6	361
29	Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7559-7564.	3.3	351
30	Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	3.5	350
31	Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nature Climate Change, 2013, 3, 283-287.	8.1	346
32	Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: Comparing multispectral and hyperspectral observations. International Journal of Remote Sensing, 2002, 23, 3939-3958.	1.3	345
33	Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 2015, 21, 1762-1776.	4.2	339
34	A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation. Remote Sensing of Environment, 2000, 74, 99-112.	4.6	324
35	Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38, 1083-1094.	2.7	321
36	Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment, 2009, 7, 269-276.	1.9	321

#	Article	IF	CITATIONS
37	A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia, 2012, 168, 1147-1160.	0.9	317
38	Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties. Agriculture, Ecosystems and Environment, 2003, 94, 205-220.	2.5	301
39	Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends in Ecology and Evolution, 2007, 22, 414-423.	4.2	295
40	Progressive forest canopy water loss during the 2012–2015 California drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E249-55.	3.3	290
41	Condition and fate of logged forests in the Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12947-12950.	3.3	286
42	Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sensing of Environment, 2012, 124, 454-465.	4.6	283
43	Land-Use Allocation Protects the Peruvian Amazon. Science, 2007, 317, 1233-1236.	6.0	279
44	Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937-1999. Global Change Biology, 2003, 9, 316-335.	4.2	278
45	Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sensing of Environment, 2011, 115, 2742-2750.	4.6	274
46	Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sensing of Environment, 2015, 158, 15-27.	4.6	274
47	Cropland distributions from temporal unmixing of MODIS data. Remote Sensing of Environment, 2004, 93, 412-422.	4.6	272
48	Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 847-855.	3.3	270
49	The biogeochemical heterogeneity of tropical forests. Trends in Ecology and Evolution, 2008, 23, 424-431.	4.2	266
50	Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13172-13177.	3.3	265
51	Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems. Journal of Applied Remote Sensing, 2007, 1, 013536.	0.6	264
52	From The Cover: Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6039-6044.	3.3	253
53	Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment, 2014, 140, 614-624.	4.6	250
54	Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends in Ecology and Evolution, 2014, 29, 681-691.	4.2	250

#	Article	IF	CITATIONS
55	Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sensing in Ecology and Conservation, 2016, 2, 122-131.	2.2	243
56	Invasive plants transform the three-dimensional structure of rain forests. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4519-4523.	3.3	236
57	Large-scale impacts of herbivores on the structural diversity of African savannas. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4947-4952.	3.3	234
58	Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18454-18459.	3.3	231
59	Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 69, 167-179.	4.9	230
60	Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sensing of Environment, 2016, 186, 372-392.	4.6	229
61	Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 2005, 94, 250-256.	2.3	228
62	Remote analysis of biological invasion and biogeochemical change. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4383-4386.	3.3	227
63	Automated mapping of tropical deforestation and forest degradation: CLASlite. Journal of Applied Remote Sensing, 2009, 3, 033543.	0.6	226
64	Measuring Fractional Cover and Leaf Area Index in Arid Ecosystems. Remote Sensing of Environment, 2000, 74, 45-57.	4.6	224
65	Applications of Remote Sensing to Alien Invasive Plant Studies. Sensors, 2009, 9, 4869-4889.	2.1	224
66	Monitoring plant functional diversity from space. Nature Plants, 2016, 2, 16024.	4.7	221
67	Remote sensing of native and invasive species in Hawaiian forests. Remote Sensing of Environment, 2008, 112, 1912-1926.	4.6	209
68	Titling indigenous communities protects forests in the Peruvian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4123-4128.	3.3	209
69	Direct impacts on local climate of sugar-cane expansion in Brazil. Nature Climate Change, 2011, 1, 105-109.	8.1	208
70	Drought impacts on the Amazon forest: the remote sensing perspective. New Phytologist, 2010, 187, 569-578.	3.5	205
71	New Directions in Earth Observing: Scientific Applications ofMultiangle Remote Sensing. Bulletin of the American Meteorological Society, 1999, 80, 2209-2228.	1.7	204
72	Satellite estimates of productivity and light use efficiency in United States agriculture, 1982-98. Global Change Biology, 2002, 8, 722-735.	4.2	203

#	Article	IF	CITATIONS
73	MULTIâ€TROPHIC INVASION RESISTANCE IN HAWAII: BIOACOUSTICS, FIELD SURVEYS, AND AIRBORNE REMOTE SENSING. Ecological Applications, 2007, 17, 2137-2144.	1.8	198
74	Spectroscopy of canopy chemicals in humid tropical forests. Remote Sensing of Environment, 2011, 115, 3587-3598.	4.6	197
75	Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Applications, 2015, 25, 1493-1505.	1.8	196
76	Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 2017, 355, 385-389.	6.0	196
77	Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology, 2010, 118, 288-300.	1.1	195
78	Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sensing of Environment, 2011, 115, 3770-3774.	4.6	194
79	Extreme Differences in Forest Degradation in Borneo: Comparing Practices in Sarawak, Sabah, and Brunei. PLoS ONE, 2013, 8, e69679.	1.1	189
80	Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environmental Research Letters, 2009, 4, 034009.	2.2	186
81	Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sensing of Environment, 2010, 114, 1561-1575.	4.6	186
82	Remote sensing of selective logging in Amazonia. Remote Sensing of Environment, 2002, 80, 483-496.	4.6	180
83	Toward the Integrated Marine Debris Observing System. Frontiers in Marine Science, 2019, 6, .	1.2	178
84	Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system. Remote Sensing of Environment, 2012, 125, 214-226.	4.6	177
85	Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology Letters, 2014, 17, 324-332.	3.0	176
86	Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data. Remote Sensing, 2012, 4, 3462-3480.	1.8	175
87	A "Global Safety Net―to reverse biodiversity loss and stabilize Earth's climate. Science Advances, 2020, 6, .	4.7	174
88	Canopy phylogenetic, chemical and spectral assembly in a lowland Amazonian forest. New Phytologist, 2011, 189, 999-1012.	3.5	170
89	Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 2014, 5, 3434.	5.8	169
90	Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. Remote Sensing of Environment, 2008, 112, 1942-1955.	4.6	168

#	Article	IF	CITATIONS
91	Tree Species Discrimination in Tropical Forests Using Airborne Imaging Spectroscopy. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 73-84.	2.7	167
92	An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sensing of Environment, 2018, 206, 156-173.	4.6	167
93	Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change, 2014, 4, 822-827.	8.1	166
94	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 2016, 22, 92-109.	4.2	165
95	CANOPY DAMAGE AND RECOVERY AFTER SELECTIVE LOGGING IN AMAZONIA: FIELD AND SATELLITE STUDIES. , 2004, 14, 280-298.		163
96	Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance and Management, 2013, 8, 10.	1.4	162
97	Forest canopy damage and recovery in reduced-impact and conventional selective logging in eastern Para, Brazil. Forest Ecology and Management, 2002, 168, 77-89.	1.4	159
98	Automated Extraction of Image-Based Endmember Bundles for Improved Spectral Unmixing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 396-408.	2.3	159
99	Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon. Global Change Biology, 2004, 10, 784-795.	4.2	158
100	Hyperspectral Remote Sensing of Canopy Biodiversity in Hawaiian Lowland Rainforests. Ecosystems, 2007, 10, 536-549.	1.6	158
101	Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environmental Research Letters, 2017, 12, 044015.	2.2	157
102	Mapping tropical forest canopy diversity using highâ€fidelity imaging spectroscopy. Ecological Applications, 2014, 24, 1289-1296.	1.8	155
103	Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Global Change Biology, 2003, 9, 1145-1157.	4.2	147
104	Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sensing of Environment, 2015, 164, 57-65.	4.6	147
105	Moisture Effects on Soil Reflectance. Soil Science Society of America Journal, 2002, 66, 722.	1.2	145
106	Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Global Change Biology, 2006, 12, 1733-1747.	4.2	143
107	Ecological Research Needs from Multiangle Remote Sensing Data. Remote Sensing of Environment, 1998, 63, 155-165.	4.6	142
108	Impact of Tissue, Canopy, and Landscape Factors on the Hyperspectral Reflectance Variability of Arid Ecosystems. Remote Sensing of Environment, 2000, 74, 69-84.	4.6	142

#	Article	IF	CITATIONS
109	Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest. Ecosystems, 2009, 12, 261-278.	1.6	142
110	Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sensing of Environment, 2017, 194, 77-88.	4.6	142
111	Landscapeâ€scale effects of herbivores on treefall in African savannas. Ecology Letters, 2012, 15, 1211-1217.	3.0	141
112	Satellite observation of El Niño effects on Amazon Forest phenology and productivity. Geophysical Research Letters, 2000, 27, 981-984.	1.5	140
113	Synergies of multiple remote sensing data sources for REDD+ monitoring. Current Opinion in Environmental Sustainability, 2012, 4, 696-706.	3.1	140
114	Amazonian functional diversity from forest canopy chemical assembly. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5604-5609.	3.3	140
115	Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests. , 2011, 21, 85-98.		139
116	Effects of fire on woody vegetation structure in African savanna. Ecological Applications, 2010, 20, 1865-1875.	1.8	135
117	Leaf chemical and spectral diversity in Australian tropical forests. Ecological Applications, 2009, 19, 236-253.	1.8	134
118	Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 2002, 16, 2-1-2-14.	1.9	133
119	Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. New Phytologist, 2017, 214, 1049-1063.	3.5	132
120	Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 587-592.	3.3	131
121	ECOLOGICAL RESEARCH IN THE LARGE-SCALE BIOSPHERE– ATMOSPHERE EXPERIMENT IN AMAZONIA: EARLY RESULTS. , 2004, 14, 3-16.		130
122	Plants reverse warming effect on ecosystem water balance. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9892-9893.	3.3	129
123	Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Global Ecology and Conservation, 2016, 8, 212-219.	1.0	127
124	Variability in Leaf and Litter Optical Properties: Implications for BRDF Model Inversions Using AVHRR, MODIS, and MISR. Remote Sensing of Environment, 1998, 63, 243-257.	4.6	124
125	Brightness-normalized Partial Least Squares Regression for hyperspectral data. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1947-1957.	1.1	124
126	Soil–Atmosphere Exchange of Nitrous Oxide, Nitric Oxide, Methane, and Carbon Dioxide in Logged and Undisturbed Forest in the Tapajos National Forest, Brazil. Earth Interactions, 2005, 9, 1-28.	0.7	122

#	Article	IF	CITATIONS
127	A Tale of Two "Forestsâ€: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping. PLoS ONE, 2014, 9, e85993.	1.1	122
128	Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sensing of Environment, 2013, 136, 14-27.	4.6	121
129	Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region. New Phytologist, 2014, 204, 127-139.	3.5	121
130	Nitrogen cycling in tropical and temperate savannas. Biogeochemistry, 2006, 79, 209-237.	1.7	118
131	WOODY PLANTS IN GRASSLANDS: POSTâ€ENCROACHMENT STAND DYNAMICS. Ecological Applications, 2008, 18, 928-944.	1.8	118
132	SCALE DEPENDENCE OF ABSORPTION OF PHOTOSYNTHETICALLY ACTIVE RADIATION IN TERRESTRIAL ECOSYSTEMS. , 1998, 8, 1003-1021.		116
133	Integrating technologies for scalable ecology and conservation. Global Ecology and Conservation, 2016, 7, 262-275.	1.0	116
134	Forest Attributes from Radar Interferometric Structure and Its Fusion with Optical Remote Sensing. BioScience, 2004, 54, 561.	2.2	115
135	Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sensing of Environment, 2011, 115, 2415-2422.	4.6	115
136	LiDAR measurements of canopy structure predict spatial distribution of a tropical mature forest primate. Remote Sensing of Environment, 2012, 127, 98-105.	4.6	115
137	The Decoupling of Terrestrial Carbon and Nitrogen Cycles. BioScience, 1997, 47, 226-234.	2.2	114
138	Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon. Global Change Biology, 2004, 10, 765-783.	4.2	114
139	Effects of Protected Areas on Forest Cover Change and Local Communities: Evidence from the Peruvian Amazon. World Development, 2016, 78, 288-307.	2.6	114
140	Canopy shadow in IKONOS satellite observations of tropical forests and savannas. Remote Sensing of Environment, 2003, 87, 521-533.	4.6	110
141	Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia, 2007, 151, 387-400.	0.9	110
142	Spatial and temporal probabilities of obtaining cloudâ€free Landsat images over the Brazilian tropical savanna. International Journal of Remote Sensing, 2007, 28, 2739-2752.	1.3	109
143	Convergent structural responses of tropical forests to diverse disturbance regimes. Ecology Letters, 2009, 12, 887-897.	3.0	109
144	Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+. Carbon Balance and Management, 2011, 6, 13.	1.4	109

#	Article	lF	CITATIONS
145	Prey-size plastics are invading larval fish nurseries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24143-24149.	3.3	108
146	Predicting tropical plant physiology from leaf and canopy spectroscopy. Oecologia, 2011, 165, 289-299.	0.9	106
147	High-fidelity national carbon mapping for resource management and REDD+. Carbon Balance and Management, 2013, 8, 7.	1.4	104
148	Influence of Deforestation, Logging, and Fire on Malaria in the Brazilian Amazon. PLoS ONE, 2014, 9, e85725.	1.1	104
149	Uncovering Ecological Patterns with Convolutional Neural Networks. Trends in Ecology and Evolution, 2019, 34, 734-745.	4.2	104
150	Observing changing ecological diversity in the Anthropocene. Frontiers in Ecology and the Environment, 2013, 11, 129-137.	1.9	101
151	Amazonian landscapes and the bias in field studies of forest structure and biomass. Proceedings of the United States of America, 2014, 111, E5224-32.	3.3	101
152	Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy. PLoS ONE, 2015, 10, e0118403.	1.1	101
153	Satellite-derived increases in net primary productivity across North America, 1982-1998. Geophysical Research Letters, 2002, 29, 69-1-69-4.	1.5	100
154	Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations1. Biotropica, 2002, 34, 483-492.	0.8	100
155	Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences, 2011, 8, 1615-1629.	1.3	100
156	Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient. Biogeosciences, 2014, 11, 843-856.	1.3	100
157	Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecology Letters, 2017, 20, 730-740.	3.0	100
158	Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties. Biotropica, 2008, 40, 141-150.	0.8	97
159	Forest Canopy Gap Distributions in the Southern Peruvian Amazon. PLoS ONE, 2013, 8, e60875.	1.1	97
160	The relative influence of fire and herbivory on savanna three-dimensional vegetation structure. Biological Conservation, 2009, 142, 1693-1700.	1.9	96
161	Lion hunting behaviour and vegetation structure in an African savanna. Animal Behaviour, 2013, 85, 899-906.	0.8	96
162	Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environmental Research Letters, 2016, 12, 094004.	2.2	94

#	Article	IF	CITATIONS
163	Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochimica Et Cosmochimica Acta, 2016, 182, 155-172.	1.6	94
164	Large-scale climatic and geophysical controls on the leaf economics spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4043-51.	3.3	93
165	Effects of land-use change on the carbon balance of terrestrial ecosystems. Geophysical Monograph Series, 2004, , 85-98.	0.1	92
166	Imaging spectroscopy for desertification studies: comparing aviris and eo-1 hyperion in argentina drylands. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 1283-1296.	2.7	91
167	High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences, 2012, 9, 2683-2696.	1.3	91
168	Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biological Conservation, 2018, 217, 289-310.	1.9	91
169	Spatial variability and abiotic determinants of termite mounds throughout a savanna catchment. Ecography, 2014, 37, 852-862.	2.1	90
170	Leafâ€level photosynthetic capacity in lowland Amazonian and highâ€elevation Andean tropical moist forests of Peru. New Phytologist, 2017, 214, 1002-1018.	3.5	89
171	Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology, 2015, 96, 1561-1574.	1.5	87
172	Highâ€resolution carbon mapping on the millionâ€hectare Island of Hawaii. Frontiers in Ecology and the Environment, 2011, 9, 434-439.	1.9	86
173	Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biological Conservation, 2010, 143, 280-288.	1.9	85
174	Land Use Impacts on Coral Reef Health: A Ridge-to-Reef Perspective. Frontiers in Marine Science, 2019, 6,	1.2	85
175	Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the United States of America, 2014, 111, E5016-22.	3.3	84
176	Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems. Remote Sensing, 2016, 8, 615.	1.8	84
177	Adaptive bathymetry estimation for shallow coastal waters using Planet Dove satellites. Remote Sensing of Environment, 2019, 232, 111302.	4.6	84
178	Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecology Letters, 2012, 15, 1001-1007.	3.0	83
179	Intermittency of Large Methane Emitters in the Permian Basin. Environmental Science and Technology Letters, 2021, 8, 567-573.	3.9	83
180	Ground-based and remotely sensed nutrient availability across a tropical landscape. Proceedings of the United States of America, 2005, 102, 10909-10912.	3.3	81

#	Article	IF	CITATIONS
181	Temporal variability of forest fires in eastern Amazonia. , 2011, 21, 2397-2412.		81
182	Mapping Recent Deforestation and Forest Disturbance in Northeastern Madagascar. Tropical Conservation Science, 2013, 6, 1-15.	0.6	81
183	Ecosystemâ€scale effects of megafauna in African savannas. Ecography, 2016, 39, 240-252.	2.1	81
184	Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Scientific Reports, 2019, 9, 17831.	1.6	81
185	Nitrogen cycling in tropical and temperate savannas. , 2006, , 209-237.		80
186	Necromass in undisturbed and logged forests in the Brazilian Amazon. Forest Ecology and Management, 2007, 238, 309-318.	1.4	80
187	Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote Sensing of Environment, 2011, 115, 1478-1488.	4.6	80
188	Cover of tall trees best predicts California spotted owl habitat. Forest Ecology and Management, 2017, 405, 166-178.	1.4	80
189	Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy. Nature Geoscience, 2015, 8, 567-573.	5.4	79
190	DESERTIFICATION IN CENTRAL ARGENTINA: CHANGES IN ECOSYSTEM CARBON AND NITROGEN FROM IMAGING SPECTROSCOPY. , 2003, 13, 629-648.		78
191	Desertification alters regional ecosystem-climate interactions. Global Change Biology, 2005, 11, 182-194.	4.2	78
192	Sources of Canopy Chemical and Spectral Diversity in Lowland Bornean Forest. Ecosystems, 2012, 15, 504-517.	1.6	78
193	A Revised Measurement Methodology for Conifer Needles Spectral Optical Properties. Remote Sensing of Environment, 1999, 68, 177-192.	4.6	76
194	Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry, 2001, 54, 1-39.	1.7	76
195	Airborne lidar survey of irrigated agricultural landscapes: an application of the slope contrast method. Journal of Archaeological Science, 2011, 38, 2141-2154.	1.2	76
196	Combined effects of climate and landâ€use change on the future of humid tropical forests. Conservation Letters, 2010, 3, 395-403.	2.8	75
197	Effects of Vegetation Structure on the Location of Lion Kill Sites in African Thicket. PLoS ONE, 2016, 11, e0149098.	1.1	75
198	Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6895-6900.	3.3	74

#	Article	IF	CITATIONS
199	What mediates tree mortality during drought in the southern Sierra Nevada?. Ecological Applications, 2017, 27, 2443-2457.	1.8	74
200	Regional insight into savanna hydrogeomorphology from termite mounds. Nature Communications, 2010, 1, 65.	5.8	73
201	Convergent elevation trends in canopy chemical traits of tropical forests. Global Change Biology, 2016, 22, 2216-2227.	4.2	73
202	Mapping the world's coral reefs using a global multiscale earth observation framework. Remote Sensing in Ecology and Conservation, 2020, 6, 557-568.	2.2	73
203	Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytologist, 2020, 228, 485-493.	3.5	72
204	A Comparison of Signal Deconvolution Algorithms Based on Small-Footprint LiDAR Waveform Simulation. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2402-2414.	2.7	71
205	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
206	CLIMATIC/EDAPHIC CONTROLS ON SOIL CARBON/NITROGEN RESPONSE TO SHRUB ENCROACHMENT IN DESERT GRASSLAND. Ecological Applications, 2007, 17, 1911-1928.	1.8	70
207	An examination of the potential efficacy of highâ€intensity fires for reversing woody encroachment in savannas. Journal of Applied Ecology, 2016, 53, 1623-1633.	1.9	70
208	Regional aboveground live carbon losses due to drought-induced tree dieback in piñon–juniper ecosystems. Remote Sensing of Environment, 2010, 114, 1471-1479.	4.6	69
209	The spatial extent of termite influences on herbivore browsing in an African savanna. Biological Conservation, 2010, 143, 2462-2467.	1.9	69
210	Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests. Remote Sensing, 2016, 8, 87.	1.8	68
211	Production of leaf wax n-alkanes across a tropical forest elevation transect. Organic Geochemistry, 2016, 100, 89-100.	0.9	68
212	Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, 2020, 369, 838-841.	6.0	68
213	Pasture degradation in the central Amazon: linking changes in carbon and nutrient cycling with remote sensing. Global Change Biology, 2004, 10, 844-862.	4.2	67
214	Evapotranspiration and energy balance of native wet montane cloud forest in Hawaiâ€~i. Agricultural and Forest Meteorology, 2009, 149, 230-243.	1.9	67
215	Mapping burn severity and burning efficiency in California using simulation models and Landsat imagery. Remote Sensing of Environment, 2010, 114, 1535-1545.	4.6	66
216	Motivating residents to combat invasive species on private lands: social norms and community reciprocity. Ecology and Society, 2016, 21, .	1.0	65

#	Article	IF	CITATIONS
217	Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest. New Phytologist, 2017, 214, 1506-1517.	3.5	65
218	Computer and remoteâ€sensing infrastructure to enhance largeâ€scale testing of individualâ€based forest models. Frontiers in Ecology and the Environment, 2015, 13, 503-511.	1.9	64
219	Tropical soil nutrient distributions determined by biotic and hillslope processes. Biogeochemistry, 2016, 127, 273-289.	1.7	64
220	On the relationship between fire regime and vegetation structure in the tropics. New Phytologist, 2018, 218, 153-166.	3.5	64
221	Object-Based Time-Constrained Dynamic Time Warping Classification of Crops Using Sentinel-2. Remote Sensing, 2019, 11, 1257.	1.8	64
222	Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105, 234-250.	4.9	62
223	Scaling PAR absorption from the leaf to landscape level in spatially heterogeneous ecosystems. Ecological Modelling, 1997, 103, 81-97.	1.2	61
224	Topo-edaphic controls over woody plant biomass in South African savannas. Biogeosciences, 2012, 9, 1809-1821.	1.3	61
225	Invasive Species Mapping in Hawaiian Rainforests Using Multi-Temporal Hyperion Spaceborne Imaging Spectroscopy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 351-359.	2.3	61
226	Spatial variability in tropical forest leaf area density from multireturn lidar and modeling. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 294-309.	1.3	61
227	Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data. Remote Sensing, 2016, 8, 161.	1.8	61
228	Hydrological Networks and Associated Topographic Variation as Templates for the Spatial Organization of Tropical Forest Vegetation. PLoS ONE, 2013, 8, e76296.	1.1	61
229	Rainfall partitioning and cloud water interception in native forest and invaded forest in Hawai'i Volcanoes National Park. Hydrological Processes, 2011, 25, 448-464.	1.1	60
230	Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity. Earth Surface Dynamics, 2016, 4, 47-70.	1.0	60
231	Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 53-68.	1.4	60
232	Airborne mapping of benthic reflectance spectra with Bayesian linear mixtures. Remote Sensing of Environment, 2017, 200, 18-30.	4.6	59
233	Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa. Forest Ecology and Management, 2011, 261, 19-29.	1.4	58
234	Cropland Area and Net Primary Production Computed from 30 Years of USDA Agricultural Harvest Data. Earth Interactions, 2004, 8, 1-20.	0.7	57

#	Article	IF	CITATIONS
235	Effects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry tropical forest. Global Change Biology, 2006, 12, 1761-1772.	4.2	57
236	Vegetation–Climate Interactions among Native and Invasive Species in Hawaiian Rainforest. Ecosystems, 2006, 9, 1106-1117.	1.6	57
237	Hyperspectral Time Series Analysis of Native and Invasive Species in Hawaiian Rainforests. Remote Sensing, 2012, 4, 2510-2529.	1.8	57
238	Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure. Landscape Ecology, 2016, 31, 1849-1862.	1.9	57
239	Assessing traitâ€based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecology and Biogeography, 2017, 26, 1357-1373.	2.7	57
240	Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytologist, 2017, 214, 973-988.	3.5	57
241	Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7863-7870.	3.3	57
242	Effects of an African grass invasion on Hawaiian shrubland nitrogen biogeochemistry. Plant and Soil, 1996, 186, 205-211.	1.8	56
243	Soil, climate, and management impacts on regional wheat productivity in Mexico from remote sensing. Agricultural and Forest Meteorology, 2002, 114, 31-43.	1.9	56
244	Selective logging changes forest phenology in the Brazilian Amazon: Evidence from MODIS image time series analysis. Remote Sensing of Environment, 2009, 113, 2431-2440.	4.6	56
245	Ecosystem structure along bioclimatic gradients in Hawai'i from imaging spectroscopy. Remote Sensing of Environment, 2005, 96, 497-508.	4.6	55
246	Improving Discrimination of Savanna Tree Species Through a Multiple-Endmember Spectral Angle Mapper Approach: Canopy-Level Analysis. IEEE Transactions on Geoscience and Remote Sensing, 2010, , .	2.7	54
247	Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Ecological Applications, 2013, 23, 1170-1184.	1.8	54
248	On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images. Remote Sensing of Environment, 2015, 159, 318-331.	4.6	54
249	Termite mounds alter the spatial distribution of African savanna tree species. Journal of Biogeography, 2016, 43, 301-313.	1.4	54
250	An Approach for Foliar Trait Retrieval from Airborne Imaging Spectroscopy of Tropical Forests. Remote Sensing, 2018, 10, 199.	1.8	54
251	Leaf Chemical and Optical Properties of <i>Metrosideros polymorpha</i> Across Environmental Gradients in Hawaii. Biotropica, 2009, 41, 292-301.	0.8	53
252	Landscapeâ€scale variation in plant community composition of an African savanna from airborne species mapping. Ecological Applications, 2014, 24, 84-93.	1.8	53

#	Article	IF	CITATIONS
253	Sustainable Management of Tropical Forests Can Reduce Carbon Emissions and Stabilize Timber Production. Frontiers in Environmental Science, 2016, 4, .	1.5	53
254	Longâ€ŧerm carbon loss and recovery following selective logging in Amazon forests. Global Biogeochemical Cycles, 2010, 24, .	1.9	52
255	Agricultural potential and actualized development in Hawai'i: an airborne LiDAR survey of the leeward Kohala field system (Hawai'i Island). Journal of Archaeological Science, 2011, 38, 3605-3619.	1.2	52
256	Remotely sensed predictors of conifer tree mortality during severe drought. Environmental Research Letters, 2017, 12, 115013.	2.2	52
257	Scale dependence of biophysical structure in deforested areas bordering the Tapajós National Forest, Central Amazon. Remote Sensing of Environment, 2003, 87, 507-520.	4.6	51
258	Spatial partitioning of biomass and diversity in a lowland Bolivian forest: Linking field and remote sensing measurements. Forest Ecology and Management, 2008, 255, 2602-2616.	1.4	51
259	Estimating Vegetation Beta Diversity from Airborne Imaging Spectroscopy and Unsupervised Clustering. Remote Sensing, 2013, 5, 2057-2071.	1.8	51
260	Coral reef atoll assessment in the South China Sea using Planet Dove satellites. Remote Sensing in Ecology and Conservation, 2017, 3, 57-65.	2.2	51
261	Variation in leaf wettability traits along a tropical montane elevation gradient. New Phytologist, 2017, 214, 989-1001.	3.5	51
262	Scaling Up Coral Reef Restoration Using Remote Sensing Technology. Frontiers in Marine Science, 2019, 6, .	1.2	51
263	Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient. Science Advances, 2019, 5, eaaw8114.	4.7	51
264	Hyperspectral Remote Sensing of Canopy Chemistry, Physiology, and Biodiversity in Tropical Rainforests. , 2008, , 261-296.		51
265	Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data. Journal of Geophysical Research, 2002, 107, ACL 7-1-ACL 7-13.	3.3	50
266	Human and environmental controls over aboveground carbon storage in Madagascar. Carbon Balance and Management, 2012, 7, 2.	1.4	50
267	Toward structural assessment of semi-arid African savannahs and woodlands: The potential of multitemporal polarimetric RADARSAT-2 fine beam images. Remote Sensing of Environment, 2013, 138, 215-231.	4.6	50
268	Unsustainable fuelwood extraction from South African savannas. Environmental Research Letters, 2013, 8, 014007.	2.2	50
269	Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. International Journal of Applied Earth Observation and Geoinformation, 2014, 31, 57-66.	1.4	50
270	Unmixing the directional reflectances of AVHRR sub-pixel landcovers. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35, 868-878.	2.7	48

#	Article	IF	CITATIONS
271	Shaping post-orogenic landscapes by climate and chemical weathering. Geology, 2013, 41, 1171-1174.	2.0	48
272	Forest structure and pattern vary by climate and landform across active-fire landscapes in the montane Sierra Nevada. Forest Ecology and Management, 2019, 437, 70-86.	1.4	48
273	HETEROGENEITY OF SAVANNA CANOPY STRUCTURE AND FUNCTION FROM IMAGING SPECTROMETRY AND INVERSE MODELING. , 1998, 8, 1022-1036.		47
274	Multiscale analysis of tree cover and aboveground carbon stocks in pinyon–juniper woodlands. Ecological Applications, 2009, 19, 668-681.	1.8	47
275	Improving pantropical forest carbon maps with airborne LiDAR sampling. Carbon Management, 2013, 4, 591-600.	1.2	47
276	Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning. Biogeosciences, 2018, 15, 3811-3830.	1.3	47
277	Correlating Stem Biomechanical Properties of Hawaiian Canopy Trees with Hurricane Wind Damage1. Biotropica, 1997, 29, 145-150.	0.8	46
278	Unexpected changes in soil phosphorus dynamics along pasture chronosequences in the humid tropics. Journal of Geophysical Research, 2002, 107, LBA 34-1.	3.3	46
279	View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS. International Journal of Remote Sensing, 2002, 23, 2247-2262.	1.3	46
280	Assessment of the mapping of fractional woody cover in southern African savannas using multi-temporal and polarimetric ALOS PALSAR L-band images. Remote Sensing of Environment, 2015, 166, 138-153.	4.6	46
281	Altitude effect on leaf wax carbon isotopic composition in humid tropical forests. Geochimica Et Cosmochimica Acta, 2017, 206, 1-17.	1.6	46
282	Changes in Vegetation Structure after Long-term Grazing in Pinyon-Juniper Ecosystems: Integrating Imaging Spectroscopy and Field Studies. Ecosystems, 2003, 6, 368-383.	1.6	45
283	EFFECTS OF WOODY VEGETATION ENCROACHMENT ON SOIL NITROGEN OXIDE EMISSIONS IN A TEMPERATE SAVANNA. , 2003, 13, 897-910.		45
284	Painting the world REDD: addressing scientific barriers to monitoring emissions from tropical forests. Environmental Research Letters, 2011, 6, 021002.	2.2	45
285	Remote sensing of forest die-off in the Anthropocene: From plant ecophysiology to canopy structure. Remote Sensing of Environment, 2019, 231, 111233.	4.6	45
286	Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica. PLoS ONE, 2015, 10, e0126748.	1.1	45
287	Estimating vegetation structural effects on carbon uptake using satellite data fusion and inverse modeling. Journal of Geophysical Research, 1998, 103, 28839-28853.	3.3	44
288	IKONOS imagery for the Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA). Remote Sensing of Environment, 2003, 88, 111-127.	4.6	44

#	Article	IF	CITATIONS
289	The rate and spatial pattern of treefall in a savanna landscape. Biological Conservation, 2013, 157, 121-127.	1.9	44
290	Substrate, climate, and land use controls over soil N dynamics and N-oxide emissions in Borneo. Biogeochemistry, 2004, 70, 27-58.	1.7	43
291	Timber production in selectively logged tropical forests in South America. Frontiers in Ecology and the Environment, 2007, 5, 213-216.	1.9	43
292	Semi-Supervised Methods to Identify Individual Crowns of Lowland Tropical Canopy Species Using Imaging Spectroscopy and LiDAR. Remote Sensing, 2012, 4, 2457-2476.	1.8	43
293	Variable effects of termite mounds on <scp>A</scp> frican savanna grass communities across a rainfall gradient. Journal of Vegetation Science, 2014, 25, 1405-1416.	1.1	43
294	Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests. Global Change Biology, 2014, 20, 2927-2937.	4.2	43
295	Prolonged tropical forest degradation due to compounding disturbances: Implications for CO ₂ and H ₂ O fluxes. Clobal Change Biology, 2019, 25, 2855-2868.	4.2	43
296	A global coral reef probability map generated using convolutional neural networks. Coral Reefs, 2020, 39, 1805-1815.	0.9	43
297	Substrate age and precipitation effects on Hawaiian forest canopies from spaceborne imaging spectroscopy. Remote Sensing of Environment, 2005, 98, 457-467.	4.6	42
298	Landscape-level variation in forest structure and biogeochemistry across a substrate age gradient in Hawaii. Ecology, 2009, 90, 3074-3086.	1.5	42
299	Boosted carbon emissions from Amazon deforestation. Geophysical Research Letters, 2009, 36, .	1.5	42
300	Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism. IForest, 2011, 4, 1-6.	0.5	42
301	Mapping habitat suitability for atâ€risk plant species and its implications for restoration and reintroduction. Ecological Applications, 2014, 24, 385-395.	1.8	42
302	Environmental drivers of tree community turnover in western Amazonian forests. Ecography, 2016, 39, 1089-1099.	2.1	41
303	Remote sensing for restoration planning: how the big picture can inform stakeholders. Restoration Ecology, 2017, 25, S147.	1.4	41
304	Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies. Remote Sensing, 2016, 8, 196.	1.8	40
305	Automated Global Shallow Water Bathymetry Mapping Using Google Earth Engine. Remote Sensing, 2021, 13, 1469.	1.8	40
306	Ecosystem Structure throughout the Brazilian Amazon from Landsat Observations and Automated Spectral Unmixing. Earth Interactions, 2005, 9, 1-31.	0.7	39

#	Article	IF	CITATIONS
307	Tradeâ€offs in seedling growth and survival within and across tropical forest microhabitats. Ecology and Evolution, 2014, 4, 3755-3767.	0.8	39
308	Spectrometry of pasture condition and biogeochemistry in the central Amazon. Geophysical Research Letters, 1999, 26, 2769-2772.	1.5	38
309	Structure-based forest biomass from fusion of radar and hyperspectral observations. Geophysical Research Letters, 2003, 30, .	1.5	38
310	Land-Cover and Surface Water Change Drive Large Albedo Increases in South America*. Earth Interactions, 2011, 15, 1-16.	0.7	38
311	Rapid forest carbon assessments of oceanic islands: a case study of the Hawaiian archipelago. Carbon Balance and Management, 2016, 11, 1.	1.4	38
312	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	4.6	38
313	Subpixel canopy cover estimation of coniferous forests in Oregon using SWIR imaging spectrometry. Journal of Geophysical Research, 2001, 106, 5151-5160.	3.3	37
314	Grazing gradient detection with airborne imaging spectroscopy on a semi-arid rangeland. Journal of Arid Environments, 2003, 55, 391-404.	1.2	37
315	Surface Soil Changes Following Selective Logging in an Eastern Amazon Forest. Earth Interactions, 2005, 9, 1-19.	0.7	37
316	Soil carbon storage responses to expanding pinyon–juniper populations in southern Utah. Ecological Applications, 2009, 19, 1405-1416.	1.8	37
317	Termite mounds differ in their importance for herbivores across savanna types, seasons and spatial scales. Oikos, 2016, 125, 726-734.	1.2	37
318	A Spectral Mapping Signature for the Rapid Ohia Death (ROD) Pathogen in Hawaiian Forests. Remote Sensing, 2018, 10, 404.	1.8	37
319	Object-Based Mapping of Coral Reef Habitats Using Planet Dove Satellites. Remote Sensing, 2019, 11, 1445.	1.8	37
320	Improving Remote Species Identification through Efficient Training Data Collection. Remote Sensing, 2014, 6, 2682-2698.	1.8	36
321	Performance of one-class classifiers for invasive species mapping using airborne imaging spectroscopy. Ecological Informatics, 2017, 37, 66-76.	2.3	36
322	3D Imaging Insights into Forests and Coral Reefs. Trends in Ecology and Evolution, 2020, 35, 6-9.	4.2	36
323	Satellite Monitoring of Vegetation Phenology and Fire Fuel Conditions in Hawaiian Drylands. Earth Interactions, 2005, 9, 1-21.	0.7	35
324	Biological invasion alters regional nitrogen-oxide emissions from tropical rainforests. Global Change Biology, 2007, 13, 2143-2160.	4.2	35

#	Article	IF	CITATIONS
325	HYPERSPECTRAL AND LIDAR REMOTE SENSING OF FIRE FUELS IN HAWAII VOLCANOES NATIONAL PARK. , 2008, 18, 613-623.		35
326	Influence of Livestock Grazing and Climate on Pinyon Pine (Pinus edulis) Dynamics. Rangeland Ecology and Management, 2009, 62, 531-539.	1.1	35
327	Use of Landsat and SRTM Data to Detect Broad-Scale Biodiversity Patterns in Northwestern Amazonia. Remote Sensing, 2012, 4, 2401-2418.	1.8	34
328	These are the days of lasers in the jungle. Carbon Balance and Management, 2014, 9, 7.	1.4	34
329	Contributions of multiâ€view angle remote sensing to landâ€surface and biogeochemical research. International Journal of Remote Sensing, 2000, 18, 137-162.	1.1	33
330	Relative importance of soil and climate variability for nitrogen management in irrigated wheat. Field Crops Research, 2004, 87, 155-165.	2.3	33
331	Single-Species Detection With Airborne Imaging Spectroscopy Data: A Comparison of Support Vector Techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 2501-2512.	2.3	33
332	L-band Synthetic Aperture Radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 54-64.	1.4	33
333	Climate, Topography, and Canopy Chemistry Exert Hierarchical Control Over Soil N Cycling in a Neotropical Lowland Forest. Ecosystems, 2017, 20, 1089-1103.	1.6	33
334	The EOS Prototype Validation Exercise (PROVE) at Jornada. Remote Sensing of Environment, 2000, 74, 1-12.	4.6	32
335	Comparison of earth observing-1 ali and landsat etm+ for crop identification and yield prediction in mexico. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41, 1277-1282.	2.7	32
336	Demographic legacies of fire history in an African savanna. Functional Ecology, 2015, 29, 131-139.	1.7	32
337	Liana canopy cover mapped throughout a tropical forest with high-fidelity imaging spectroscopy. Remote Sensing of Environment, 2016, 176, 98-106.	4.6	32
338	Canopy structure drives orangutan habitat selection in disturbed Bornean forests. Proceedings of the United States of America, 2017, 114, 8307-8312.	3.3	32
339	Quantifying Global Power Plant Carbon Dioxide Emissions With Imaging Spectroscopy. AGU Advances, 2021, 2, e2020AV000350.	2.3	32
340	The magnitude and variability of soil-surface CO2 efflux increase with mean annual temperature in Hawaiian tropical montane wet forests. Soil Biology and Biochemistry, 2011, 43, 2315-2323.	4.2	31
341	Determining Subcanopy Psidium cattleianum Invasion in Hawaiian Forests Using Imaging Spectroscopy. Remote Sensing, 2016, 8, 33.	1.8	31
342	Predicting traitâ€environment relationships for venation networks along an Andesâ€Amazon elevation gradient. Ecology, 2017, 98, 1239-1255.	1.5	31

#	Article	IF	CITATIONS
343	Remote measurement of canopy water content in giant sequoias (Sequoiadendron giganteum) during drought. Forest Ecology and Management, 2018, 419-420, 279-290.	1.4	31
344	An Approach for High-Resolution Mapping of Hawaiian Metrosideros Forest Mortality Using Laser-Guided Imaging Spectroscopy. Remote Sensing, 2018, 10, 502.	1.8	31
345	Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nature Communications, 2021, 12, 1526.	5.8	31
346	Spatial heterogeneity facilitates carnivore coexistence. Ecology, 2021, 102, e03319.	1.5	31
347	Recovery Of Forest Structure And Spectral Properties After Selective Logging In Lowland Bolivia. , 2006, 16, 1148-1163.		30
348	Forest Drought Resistance at Large Geographic Scales. Geophysical Research Letters, 2019, 46, 2752-2760.	1.5	30
349	Spatial patterning among savanna trees in high-resolution, spatially extensive data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10681-10685.	3.3	30
350	Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands. PLoS ONE, 2015, 10, e0127093.	1.1	30
351	Scale-dependence of aboveground carbon accumulation in secondary forests of Panama: A test of the intermediate peak hypothesis. Forest Ecology and Management, 2012, 276, 62-70.	1.4	29
352	Building and testing models of long-term agricultural intensification and population dynamics: A case study from the Leeward Kohala Field System, Hawai'i. Ecological Modelling, 2012, 227, 18-28.	1.2	29
353	Geography of forest disturbance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3711-3712.	3.3	29
354	Winners and losers in the competition for space in tropical forest canopies. Ecology Letters, 2014, 17, 556-562.	3.0	29
355	A chemical-evolutionary basis for remote sensing of tropical forest diversity. , 2014, , 343-358.		29
356	Protected area management priorities crucial for the future of Bornean elephants. Biological Conservation, 2018, 221, 365-373.	1.9	29
357	Beyond Refugia: New Insights on Quaternary Climate Variation and the Evolution of Biotic Diversity in Tropical South America. Fascinating Life Sciences, 2020, , 51-70.	0.5	29
358	Large-scale mapping of live corals to guide reef conservation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33711-33718.	3.3	29
359	Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems. Canadian Journal of Remote Sensing, 2011, 37, 653-665.	1.1	28
360	Human-modified landscapes: patterns of fine-scale woody vegetation structure in communal savannah rangelands. Environmental Conservation, 2012, 39, 72-82.	0.7	28

#	Article	IF	CITATIONS
361	Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 449-469.	1.3	28
362	Humans and elephants as treefall drivers in African savannas. Ecography, 2017, 40, 1274-1284.	2.1	28
363	Megafaunal effects on vegetation structure throughout a densely wooded African landscape. Ecological Applications, 2018, 28, 398-408.	1.8	28
364	A tree-based approach to biomass estimation from remote sensing data in a tropical agricultural landscape. Remote Sensing of Environment, 2018, 218, 32-43.	4.6	28
365	Loss of nutrients from terrestrial ecosystems to streams and the atmosphere following land use change in Amazonia. Geophysical Monograph Series, 2004, , 147-158.	0.1	27
366	Remote analysis of biological invasion and the impact of enemy release. , 2011, 21, 2094-2104.		27
367	Dependence of Forest Structure and Dynamics on Substrate Age and Ecosystem Development. Ecosystems, 2011, 14, 1156-1167.	1.6	27
368	Hyperspectral shape-based unmixing to improve intra- and interclass variability for forest and agro-ecosystem monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 74, 163-174.	4.9	27
369	Linking vegetation patterns to environmental gradients and human impacts in a mediterranean-type island ecosystem. Landscape Ecology, 2014, 29, 1571-1585.	1.9	27
370	Branchfall dominates annual carbon flux across lowland Amazonian forests. Environmental Research Letters, 2016, 11, 094027.	2.2	27
371	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	3.4	27
372	Imaging spectroscopy measures desertification in United States and Argentina. Eos, 2001, 82, 601-601.	0.1	26
373	Examining variation in the leaf mass per area of dominant species across two contrasting tropical gradients in light of community assembly. Ecology and Evolution, 2016, 6, 5674-5689.	0.8	26
374	Elephants limit aboveground carbon gains in African savannas. Global Change Biology, 2019, 25, 1368-1382.	4.2	26
375	High-Resolution Reef Bathymetry and Coral Habitat Complexity from Airborne Imaging Spectroscopy. Remote Sensing, 2020, 12, 310.	1.8	26
376	Surface slicks are pelagic nurseries for diverse ocean fauna. Scientific Reports, 2021, 11, 3197.	1.6	26
377	Land use effects on atmospheric13C imply a sizable terrestrial CO2sink in tropical latitudes. Geophysical Research Letters, 2002, 29, 68-1-68-4.	1.5	25
378	Environmental filtering and landâ€use history drive patterns in biomass accumulation in a mediterraneanâ€type landscape. Ecological Applications, 2012, 22, 104-118.	1.8	25

#	Article	IF	CITATIONS
379	Integrating Li <scp>DAR</scp> â€derived tree height and Landsat satellite reflectance to estimate forest regrowth in a tropical agricultural landscape. Remote Sensing in Ecology and Conservation, 2016, 2, 190-203.	2.2	25
380	Landscape evolution and nutrient rejuvenation reflected in Amazon forest canopy chemistry. Ecology Letters, 2018, 21, 978-988.	3.0	25
381	Imaging spectroscopy predicts variable distance decay across contrasting Amazonian tree communities. Journal of Ecology, 2019, 107, 696-710.	1.9	25
382	Natural and anthropogenic drivers of Bornean elephant movement strategies. Global Ecology and Conservation, 2020, 22, e00906.	1.0	25
383	Aboveground carbon emissions from gold mining in the Peruvian Amazon. Environmental Research Letters, 2020, 15, 014006.	2.2	25
384	Advancing Landscape and Seascape Ecology from a 2D to a 3D Science. BioScience, 2021, 71, 596-608.	2.2	25
385	A Robust Signal Preprocessing Chain for Small-Footprint Waveform LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 3242-3255.	2.7	24
386	Roads increase woody cover under varying geological, rainfall and fire regimes inÂAfrican savanna. Journal of Arid Environments, 2012, 80, 74-80.	1.2	24
387	The â€~why', â€~what' and â€~how' of monitoring for conservation. , 2013, , 327-343.		24
388	Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees - Structure and Function, 2014, 28, 91-102.	0.9	24
389	Carbon storage landscapes of lowland Hawaii: the role of native and invasive species through space and time. Ecological Applications, 2014, 24, 716-731.	1.8	24
390	Organismic Remote Sensing for Tropical Forest Ecology and Conservation ^{1,} ² . Annals of the Missouri Botanical Garden, 2015, 100, 127-140.	1.3	24
391	Centennial impacts of fragmentation on the canopy structure of tropical montane forest. Ecological Applications, 2014, 24, 1638-1650.	1.8	23
392	Spectroscopic Remote Sensing of Non-Structural Carbohydrates in Forest Canopies. Remote Sensing, 2015, 7, 3526-3547.	1.8	23
393	Tropical forest leaves may darken in response to climate change. Nature Ecology and Evolution, 2018, 2, 1918-1924.	3.4	23
394	Remotely sensed canopy nitrogen correlates with nitrous oxide emissions in a lowland tropical rainforest. Ecology, 2018, 99, 2080-2089.	1.5	23
395	Dominant tree species drive beta diversity patterns in western Amazonia. Ecology, 2019, 100, e02636.	1.5	23
396	Covariance of Sun and Shade Leaf Traits Along a Tropical Forest Elevation Gradient. Frontiers in Plant Science, 2019, 10, 1810.	1.7	23

#	Article	IF	CITATIONS
397	Synergistic benefits of conserving land-sea ecosystems. Global Ecology and Conservation, 2021, 28, e01684.	1.0	23
398	An ecosystem model for tropical forest disturbance and selective logging. Journal of Geophysical Research, 2008, 113, .	3.3	22
399	Linking imaging spectroscopy and LiDAR with floristic composition and forest structure in Panama. Remote Sensing of Environment, 2014, 154, 358-367.	4.6	22
400	Mesoscale assessment of changes in tropical tree species richness across a bioclimatic gradient in Panama using airborne imaging spectroscopy. Remote Sensing of Environment, 2015, 167, 111-120.	4.6	22
401	Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community. Oecologia, 2018, 186, 765-782.	0.9	22
402	Carbon accumulation in Colorado ponderosa pine stands. Canadian Journal of Forest Research, 2004, 34, 1283-1295.	0.8	21
403	Objective indicators of pasture degradation from spectral mixture analysis of Landsat imagery. Journal of Geophysical Research, 2008, 113, .	3.3	21
404	Effects of Morella faya tree invasion on aboveground carbon storage in Hawaii. Biological Invasions, 2010, 12, 477-494.	1.2	21
405	Spatial patterns in the effects of fire on savanna vegetation threeâ€dimensional structure. Ecological Applications, 2012, 22, 2110-2121.	1.8	21
406	Challenges in Estimating Tropical Forest Canopy Height from Planet Dove Imagery. Remote Sensing, 2020, 12, 1160.	1.8	21
407	Selective logging and its relation to deforestation. Geophysical Monograph Series, 2009, , 25-42.	0.1	20
408	Environmental controls on canopy foliar nitrogen distributions in a Neotropical lowland forest. Ecological Applications, 2016, 26, 2451-2464.	1.8	20
409	Workflow for the Generation of Expert-Derived Training and Validation Data: A View to Global Scale Habitat Mapping. Frontiers in Marine Science, 2021, 8, .	1.2	20
410	The Sensitivity of Multi-spectral Satellite Sensors to Benthic Habitat Change. Remote Sensing, 2020, 12, 532.	1.8	20
411	The changing rates and patterns of deforestation and land use in Brazilian Amazonia. Geophysical Monograph Series, 2009, , 11-23.	0.1	19
412	Equivalent water thickness in savanna ecosystems: MODIS estimates based on ground and EO-1 Hyperion data. International Journal of Remote Sensing, 2011, 32, 7423-7440.	1.3	19
413	Multiple dimensions of resource limitation in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4864-4865.	3.3	19
414	Extracting Structural Vegetation Components From Small-Footprint Waveform Lidar for Biomass Estimation in Savanna Ecosystems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 480-490.	2.3	19

#	Article	IF	CITATIONS
415	Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia. PLoS ONE, 2015, 10, e0119887.	1.1	19
416	Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR. Remote Sensing, 2016, 8, 9.	1.8	19
417	Limited spatial response to direct predation risk by African herbivores following predator reintroduction. Ecology and Evolution, 2016, 6, 5728-5748.	0.8	19
418	Landscape-scale variation in canopy water content of giant sequoias during drought. Forest Ecology and Management, 2018, 419-420, 291-304.	1.4	19
419	Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography. Frontiers in Earth Science, 2019, 7, .	0.8	19
420	Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests. Biological Conservation, 2019, 232, 97-107.	1.9	19
421	The Influence of Ecosystem and Phylogeny on Tropical Tree Crown Size and Shape. Frontiers in Forests and Global Change, 2020, 3, .	1.0	19
422	The Influence of Taxonomy and Environment on Leaf Trait Variation Along Tropical Abiotic Gradients. Frontiers in Forests and Global Change, 2020, 3, .	1.0	19
423	Leaf litter inputs reinforce islands of nitrogen fertility in a lowland tropical forest. Biogeochemistry, 2020, 147, 293-306.	1.7	19
424	Impacts of pollution, fishing pressure, and reef rugosity on resource fish biomass in West Hawaii. Ecological Applications, 2021, 31, e2213.	1.8	19
425	4. Sustainability of Selective Logging of Upland Forests in the Brazilian Amazon. , 2004, , 41-63.		19
426	Per-Pixel Analysis of Forest Structure. , 2003, , 209-254.		18
427	Trade-offs in land-use decisions: Towards a framework for assessing multiple ecosystem responses to land-use change. Geophysical Monograph Series, 2004, , 1-9.	0.1	18
428	Modeling regional variation in net primary production of pinyon–juniper ecosystems. Ecological Modelling, 2012, 227, 82-92.	1.2	18
429	Microtopographic controls on lowland Amazonian canopy diversity from imaging spectroscopy. Ecological Applications, 2014, 24, 1297-1310.	1.8	18
430	Advancing reference emission levels in subnational and national REDD+ initiatives: a CLASlite approach. Carbon Balance and Management, 2015, 10, 5.	1.4	18
431	A hyperspectral image can predict tropical tree growth rates in singleâ€species stands. Ecological Applications, 2016, 26, 2369-2375.	1.8	18
432	Exploring dispersal barriers using landscape genetic resistance modelling in scarlet macaws of the Peruvian Amazon. Landscape Ecology, 2017, 32, 445-456.	1.9	18

#	Article	IF	CITATIONS
433	Structural and defensive roles of angiosperm leaf venation network reticulation across an Andes–Amazon elevation gradient. Journal of Ecology, 2018, 106, 1683-1699.	1.9	18
434	Sea surface temperature in coral reef restoration outcomes. Environmental Research Letters, 2020, 15, 074045.	2.2	18
435	Regional Estimate of Nitric Oxide Emissions Following Woody Encroachment: Linking Imaging Spectroscopy and Field Studies. Ecosystems, 2005, 8, 33-47.	1.6	17
436	Hyper-Temporal C-Band SAR for Baseline Woody Structural Assessments in Deciduous Savannas. Remote Sensing, 2016, 8, 661.	1.8	17
437	Prioritizing landscapes for restoration based on spatial patterns of ecosystem controls and plant–plant interactions. Journal of Applied Ecology, 2017, 54, 1459-1468.	1.9	17
438	Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2952-2965.	1.3	17
439	Estimating aboveground carbon density across forest landscapes of Hawaii: Combining FIA plot-derived estimates and airborne LiDAR. Forest Ecology and Management, 2018, 424, 323-337.	1.4	17
440	Effect of microsite quality and species composition on tree growth: A semi-empirical modeling approach. Forest Ecology and Management, 2019, 432, 534-545.	1.4	17
441	Resistance of mound-building termites to anthropogenic land-use change. Environmental Research Letters, 2020, 15, 094038.	2.2	17
442	Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds. PLoS ONE, 2015, 10, e0145192.	1.1	17
443	Scale-dependence of environmental and socioeconomic drivers of albizia invasion in Hawaii. Landscape and Urban Planning, 2018, 169, 70-80.	3.4	16
444	The cost and distribution of forest conservation for national emissions reductions. Global Environmental Change, 2018, 53, 39-51.	3.6	16
445	Incorporating connectivity into conservation planning for the optimal representation of multiple species and ecosystem services. Conservation Biology, 2020, 34, 934-942.	2.4	16
446	Quantifying Tropical Plant Diversity Requires an Integrated Technological Approach. Trends in Ecology and Evolution, 2020, 35, 1100-1109.	4.2	16
447	Hemiparasite–host plant interactions in a fragmented landscape assessed via imaging spectroscopy and Li <scp>DAR</scp> . Ecological Applications, 2016, 26, 55-66.	1.8	15
448	Leaf- and crown-level adjustments help giant sequoias maintain favorable water status during severe drought. Forest Ecology and Management, 2018, 419-420, 257-267.	1.4	15
449	Overlapping land allocations reduce deforestation in Peru. Land Use Policy, 2018, 79, 174-178.	2.5	15
450	A Density-Based Approach for Leaf Area Index Assessment in a Complex Forest Environment Using a Terrestrial Laser Scanner. Remote Sensing, 2019, 11, 1791.	1.8	15

#	Article	IF	CITATIONS
451	Regional High-Resolution Benthic Habitat Data from Planet Dove Imagery for Conservation Decision-Making and Marine Planning. Remote Sensing, 2021, 13, 4215.	1.8	15
452	Response to Comment on "Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields". Science, 2003, 300, 1505c-1505.	6.0	14
453	Seasonal Variation in Spectral Signatures of Five Genera of Rainforest Trees. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 339-350.	2.3	14
454	Coexistence and environmental filtering of species-specific biomass in an African savanna. Ecology, 2014, 95, 1579-1590.	1.5	14
455	Mapped coral mortality and refugia in an archipelago-scale marine heat wave. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2123331119.	3.3	14
456	Satellites and psychology for improved forest monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 567-568.	3.3	13
457	Coral Bleaching Detection in the Hawaiian Islands Using Spatio-Temporal Standardized Bottom Reflectance and Planet Dove Satellites. Remote Sensing, 2020, 12, 3219.	1.8	13
458	Litter inputs drive patterns of soil nitrogen heterogeneity in a diverse tropical forest: Results from a litter manipulation experiment. Soil Biology and Biochemistry, 2021, 158, 108247.	4.2	13
459	Land-Use Choices: Balancing Human Needs and Ecosystem Function. Frontiers in Ecology and the Environment, 2004, 2, 249.	1.9	13
460	Deforestation scenarios show the importance of secondary forest for meeting Panama's carbon goals. Landscape Ecology, 2022, 37, 673-694.	1.9	13
461	Combining Hyperspectral Remote Sensing and Physical Modeling for Applications in Land Ecosystems. , 2006, , .		12
462	A Glimpse Out the Window: Landscapes, Livelihoods, and the Environment. Environment, 2006, 48, 22-36.	0.8	12
463	Allometric constraints on sources of variability in multi-angle reflectance measurements. Remote Sensing of Environment, 2010, 114, 1205-1219.	4.6	12
464	Savanna woody vegetation classification – now in 3â€Ð. Applied Vegetation Science, 2014, 17, 172-184.	0.9	12
465	Seasonal variation in the relative dominance of herbivore guilds in an African savanna. Ecology, 2016, 97, 1618-1624.	1.5	12
466	Underproductive agriculture aids connectivity in tropical forests. Forest Ecology and Management, 2017, 401, 159-165.	1.4	12
467	Opportunistic feeding by lions: non-preferred prey comprise an important part of lion diets in a habitat where preferred prey are abundant. Mammal Research, 2020, 65, 235-243.	0.6	12
468	Monitoring tropical forest succession at landscape scales despite uncertainty in Landsat time series. Ecological Applications, 2021, 31, e02208.	1.8	12

#	Article	IF	CITATIONS
469	Environmental controls on African herbivore responses to landscapes of fear. Oikos, 2021, 130, 171-186.	1.2	12
470	Exploring the links between secondary metabolites and leaf spectral reflectance in a diverse genus of Amazonian trees. Ecosphere, 2021, 12, e03362.	1.0	12
471	NASA Mission to Measure Global Plant Physiology and Functional Types. Aerospace Conference Proceedings IEEE, 2008, , .	0.0	11
472	Twentieth century carbon stock changes related to Piñon-Juniper expansion into a black sagebrush community. Carbon Balance and Management, 2013, 8, 8.	1.4	11
473	Biological Diversity Mapping Comes of Age. Remote Sensing, 2013, 5, 374-376.	1.8	11
474	Linking rainforest ecophysiology and microclimate through fusion of airborne LiDAR and hyperspectral imagery. Ecosphere, 2014, 5, 1-37.	1.0	11
475	Management approaches of conservation areas: Differences in woody vegetation structure in a private and a national reserve. South African Journal of Botany, 2014, 90, 146-152.	1.2	11
476	Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest. Ecosphere, 2015, 6, art271.	1.0	11
477	Spatially explicit analysis of field inventories for national forest carbon monitoring. Carbon Balance and Management, 2016, 11, 9.	1.4	11
478	Conservation assessment of the Peruvian Andes and Amazon based on mapped forest functional diversity. Biological Conservation, 2017, 210, 80-88.	1.9	11
479	Biotic and Abiotic Controls Over Canopy Function and Structure in Humid Hawaiian Forests. Ecosystems, 2018, 21, 331-348.	1.6	11
480	Ecosystemâ€scale mapping of coral species and thermal tolerance. Frontiers in Ecology and the Environment, 2022, 20, 285-291.	1.9	11
481	LiDAR: providing structure. Frontiers in Ecology and the Environment, 2011, 9, 261-262.	1.9	10
482	Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon. PLoS ONE, 2014, 9, e86042.	1.1	10
483	Variation in photosynthetic and nonphotosynthetic vegetation along edaphic and compositional gradients in northwestern Amazonia. Biogeosciences, 2014, 11, 3505-3513.	1.3	10
484	Tree Foliar Chemistry in an African Savanna and Its Relation to Life History Strategies and Environmental Filters. PLoS ONE, 2015, 10, e0124078.	1.1	10
485	Topographic distributions of emergent trees in tropical forests of the Osa Peninsula, Costa Rica. Ecography, 2017, 40, 829-839.	2.1	10
486	Landscapeâ€scale GPP and carbon density inform patterns and impacts of an invasive tree across wet forests of Hawaii. Ecological Applications, 2017, 27, 403-415.	1.8	10

#	Article	IF	CITATIONS
487	Spatial drivers of composition and connectivity across endangered tropical dry forests. Journal of Applied Ecology, 2020, 57, 1593-1604.	1.9	10
488	Imaging Spectroscopy for Conservation Applications. Remote Sensing, 2021, 13, 292.	1.8	10
489	Near-real time aboveground carbon emissions in Peru. PLoS ONE, 2020, 15, e0241418.	1.1	10
490	From polyps to pixels: understanding coral reef resilience to local and global change across scales. Landscape Ecology, 2023, 38, 737-752.	1.9	10
491	FLuorescence EXplorer (FLEX): an optimised payload to map vegetation photosynthesis from space. , 2006, , .		9
492	PROSPECT+SAIL: 15 Years of Use for Land Surface Characterization. , 2006, , .		9
493	Coherence among the Northern Hemisphere land, cryosphere, and ocean responses to natural variability and anthropogenic forcing during the satellite era. Earth System Dynamics, 2016, 7, 717-734.	2.7	9
494	Den site selection, pack composition, and reproductive success in endangered African wild dogs. Behavioral Ecology, 0, , arw124.	1.0	9
495	Effects of long-term rainfall decline on the structure and functioning of Hawaiian forests. Environmental Research Letters, 2016, 12, 094002.	2.2	9
496	Leaf to landscape responses of giant sequoia to hotter drought: An introduction and synthesis for the special section. Forest Ecology and Management, 2018, 419-420, 249-256.	1.4	9
497	Landslide age, elevation and residual vegetation determine tropical montane forest canopy recovery and biomass accumulation after landslide disturbances in the Peruvian Andes. Journal of Ecology, 2021, 109, 3555-3571.	1.9	9
498	Drivers of woody canopy water content responses to drought in a Mediterraneanâ€ŧype ecosystem. Ecological Applications, 2017, 27, 2220-2233.	1.8	9
499	Ecosystems and Problems of Measurement at Large Spatial Scales. , 1998, , 346-371.		9
500	Empirically validated drought vulnerability mapping in the mixed conifer forests of the <scp>Sierra Nevada</scp> . Ecological Applications, 2022, 32, e2514.	1.8	9
501	Biogeochemistry of desertification and woody encroachment in grazing systems. Geophysical Monograph Series, 2004, , 99-116.	0.1	8
502	Connecting the dots between laser waveforms and herbaceous biomass for assessment of land degradation using small-footprint waveform LiDAR data. , 2009, , .		8
503	Lack of association between deforestation and either sustainability commitments or fines in private concessions in the Peruvian Amazon. Forest Policy and Economics, 2019, 104, 1-8.	1.5	8
504	Impacts of remotely sensed environmental drivers on coral outplant survival. Restoration Ecology, 2021, 29, .	1.4	8

#	Article	IF	CITATIONS
505	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	3.4	8
506	The bioâ€geophysical approach to remote sensing of vegetation in coupled humanâ€environment systems – societal benefits and global context. Journal of Spatial Science, 2006, 51, 49-66.	1.0	7
507	Top-Down Analysis of Forest Structure and Biogeochemistry Across Hawaiian Landscapes. Pacific Science, 2010, 64, 359-366.	0.2	7
508	Habitat differences do not explain population declines of sable antelope in an <scp>A</scp> frican savanna. Journal of Zoology, 2015, 297, 225-234.	0.8	7
509	What lies beneath: detecting subâ€canopy changes in savanna woodlands using a threeâ€dimensional classification method. Applied Vegetation Science, 2015, 18, 528-540.	0.9	7
510	Fuelwood extraction intensity drives compensatory regrowth in African savanna communal lands. Land Degradation and Development, 2019, 30, 190-201.	1.8	7
511	Abiotic and Human Drivers of Reef Habitat Complexity Throughout the Main Hawaiian Islands. Frontiers in Marine Science, 2021, 8, .	1.2	7
512	Geomorphic transience moderates topographic controls on tropical canopy foliar traits. Ecology Letters, 2020, 23, 1276-1286.	3.0	7
513	Riparian vegetation structure and the hunting behavior of adult estuarine crocodiles. PLoS ONE, 2017, 12, e0184804.	1.1	7
514	Early detection of a tree pathogen using airborne remote sensing. Ecological Applications, 2022, 32, e2519.	1.8	7
515	The large-scale biosphere-atmosphere experiment in Amazonia: Analyzing regional land use change effects. Geophysical Monograph Series, 2004, , 321-334.	0.1	6
516	Retrieval of Quantitative and Qualitative Information about Plant Pigment Systems from High Resolution Spectroscopy. , 2006, , .		6
517	Variações sazonais nas concentrações de pigmentos e nutrientes em folhas de espécies de cerrado com diferentes estratégias fenológicas. Revista Brasileira De Botanica, 2007, 30, .	0.5	6
518	Advances in airborne remote sensing of ecosystem processes and properties: toward high-quality measurement on a global scale. Proceedings of SPIE, 2010, , .	0.8	6
519	Binary partition tree as a hyperspectral segmentation tool for tropical rainforests. , 2012, , .		6
520	Reprint: Building and testing models of long-term agricultural intensification and population dynamics: A case study from the Leeward Kohala Field System, Hawai'i. Ecological Modelling, 2012, 241, 54-64.	1.2	6
521	Polar grid fraction as an estimator of montane tropical forest canopy structure using airborne lidar. International Journal of Remote Sensing, 2013, 34, 7464-7473.	1.3	6
522	The assessment of data mining algorithms for modelling Savannah Woody cover using multi-frequency (Xz, Cz and Labard) synthetic anerture radar (SAP) datasets 2014		6

multi-frequency (X-, C- and L-band) synthetic aperture radar (SAR) datasets. , 2014, , . 522

#	Article	IF	CITATIONS
523	Biodiversity and agriculture in dynamic landscapes: Integrating ground and remotely-sensed baseline surveys. Journal of Environmental Management, 2016, 177, 9-19.	3.8	6
524	Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest. Frontiers in Plant Science, 2017, 8, 1256.	1.7	6
525	A new remote sensing-based carbon sequestration potential index (CSPI): A tool to support land carbon management. Forest Ecology and Management, 2021, 494, 119343.	1.4	6
526	Integrating ecosystem services modeling and efficiencies in decision-support models conceptualization for watershed management. Ecological Modelling, 2022, 466, 109879.	1.2	6
527	Reply to Skole et al.: Regarding high-resolution carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E13-E14.	3.3	5
528	Resilience against exotic species invasion in a tropical montane forest. Journal of Vegetation Science, 2014, 25, 734-749.	1.1	5
529	Indirect Estimation of Structural Parameters in South African Forests Using MISR-HR and LiDAR Remote Sensing Data. Remote Sensing, 2018, 10, 1537.	1.8	5
530	High-Resolution Mapping of Redwood (Sequoia sempervirens) Distributions in Three Californian Forests. Remote Sensing, 2019, 11, 351.	1.8	5
531	Landscape scale variation in the hydrologic niche of California coast redwood. Ecography, 2020, 43, 1305-1315.	2.1	5
532	Regional Reef Fish Survey Design and Scaling Using High-Resolution Mapping and Analysis. Frontiers in Marine Science, 2021, 8, .	1.2	5
533	Primary Succession on a Hawaiian Dryland Chronosequence. PLoS ONE, 2015, 10, e0123995.	1.1	5
534	Optimizing invasive species management using mathematical programming to support stewardship of water and carbon-based ecosystem services. Journal of Environmental Management, 2022, 301, 113803.	3.8	5
535	Are Sunken Warships Biodiversity Havens for Corals?. Diversity, 2022, 14, 139.	0.7	5
536	Effects of Protected Areas on Forest Cover Change and Local Communities: Evidence from the Peruvian Amazon. SSRN Electronic Journal, 2014, , .	0.4	4
537	Hydrological effects of tree invasion on a dry coastal Hawaiian ecosystem. Forest Ecology and Management, 2020, 458, 117653.	1.4	4
538	Space-use patterns of Malay civets (Viverra tangalunga) persisting within a landscape fragmented by oil palm plantations. Landscape Ecology, 2021, 36, 915-930.	1.9	4
539	Ecosystem carbon balance in the Hawaiian Islands under different scenarios of future climate and land use change. Environmental Research Letters, 2021, 16, 104020.	2.2	4
540	A framework for establishing a rapid â€~ÅŒhiâ€~a death resistance program. New Forests, 2023, 54, 637-660.	0.7	4

#	Article	IF	CITATIONS
541	Warming Alters the Relationship Between Benthic Cover and Herbivores on Hawaiian Reefs. Frontiers in Marine Science, 2022, 9, .	1.2	4
542	Speciesâ€level tree crown maps improve predictions of tree recruit abundance in a tropical landscape. Ecological Applications, 2022, 32, e2585.	1.8	4
543	Improving landscapeâ€scale productivity estimates by integrating traitâ€based models and remotelyâ€sensed foliarâ€trait and canopyâ€structural data. Ecography, 2022, 2022, .	2.1	4
544	Detailed structural characterisation of the savanna flux site at Skukuza, South Africa. , 2009, , .		3
545	Spectral variability within species and its effects on Savanna tree species discrimination. , 2009, , .		3
546	Historical Land-Cover Classification for Conservation and Management in Hawaiian Subalpine Drylands. Pacific Science, 2012, 66, 457-466.	0.2	3
547	High-Resolution Remote Sensing Data as a Boundary Object to Facilitate Interdisciplinary Collaboration. , 2019, , 295-326.		3
548	Mesoscale Exploration and Conservation of Tropical Canopies in a Changing Climate. , 2013, , 177-193.		3
549	Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations1. Biotropica, 2002, 34, 483.	0.8	2
550	Typological responses of ecosystems to land use change. Geophysical Monograph Series, 2004, , 337-344.	0.1	2
551	Three-dimensional woody vegetation structure across different land-use types and -land-use intensities in a semi-arid savanna. , 2009, , .		2
552	Regularization of discriminant analysis for the study of biodiversity in humid tropical forests. , 2011, ,		2
553	Reply to Robinson et al.: Building the evidence base on the forest cover effects of community titling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5765-E5765.	3.3	2
554	Mapping the vulnerability of giant sequoias after extreme drought in California using remote sensing. Ecological Applications, 2021, 31, e02395.	1.8	2
555	Site Selection for Coral Reef Restoration Using Airborne Imaging Spectroscopy. Frontiers in Marine Science, 2021, 8, .	1.2	2
556	Depth-dependent indicators of algal turf herbivory throughout the Main Hawaiian Islands. Coral Reefs, 2021, 40, 1397-1408.	0.9	2
557	Land-use choices: balancing human needs and ecosystem function. , 2004, 2, 249.		2
558	Shallow coastal water turbidity monitoring using Planet Dove satellites. Remote Sensing in Ecology and Conservation, 2022, 8, 521-535.	2.2	2

#	Article	IF	CITATIONS
559	Researching the History of Technology at the Hagley Museum and Library. Technology and Culture, 2003, 44, 762-777.	0.0	1
560	<title>Imaging spectroscopy studies of Hawaiian ecosystems, carbon properties, and disturbance</title> . , 2005, , .		1
561	Letters to the editor about the contents of past issues and comments on topics of current concern toFrontiersreaders. Frontiers in Ecology and the Environment, 2007, 5, 237-240.	1.9	1
562	Fusing waveform lidar and hyperspectral data for species-level structural assessment in savanna ecosystems. Proceedings of SPIE, 2010, , .	0.8	1
563	Impacts of communal fuelwood extraction on LiDAR-estimated biomass patterns of savanna woodlands. , 2012, , .		1
564	Mapping tropical rainforest canopies using multi-temporal spaceborne imaging spectroscopy. , 2013, , .		1
565	Woody cover assessments in a Southern African savanna, using hyper-temporal C-band ASAR-WS data. , 2014, , .		1
566	Using spatially explicit, timeâ€dependent analysis to understand how social factors influence conservation outcomes. Conservation Biology, 2020, 34, 505-514.	2.4	1
567	Effects of an African grass invasion on Hawaiian shrubland nitrogen biogeochemistry. Hydrobiologia, 1996, 186, 205-211.	1.0	1
568	Computing for Analysis and Modeling of Hyperspectral Imagery. Chapman & Hall/CRC Computer and Information Science Series, 2007, , 109-130.	0.4	1
569	Tree cover, tree height and bare soil cover differences along a land use degradation gradient in semi-arid savannas, South Africa. , 2009, , .		0
570	Scaling up equivalent water thickness in savanna environments: From local to biome scale, via ground, Hyperion, and MODIS data. , 2009, , .		0
571	SAR-to-LiDAR mapping for tree volume prediction in the Kruger National Park. , 2011, , .		0
572	Shape-based unmixing for vegetation mapping. , 2012, , .		0
573	Corrigendum to "Topo-edaphic controls over woody plant biomass in South African savannas" published in Biogeosciences, 9, 1809–1821, 2012. Biogeosciences, 2013, 10, 2655-2655.	1.3	0
574	Monitoring plant invasions in Hawaiian rainforests through multi-temporal unmixing. , 2014, , .		0
575	Termites and trees. Response to comment on â€~Termite mounds alter the spatial distribution of African savanna tree species'. Journal of Biogeography, 2017, 44, 952-956.	1.4	0
576	Impacts of Pollution, Fishing Pressure, and Reef Rugosity on Resource Fish Biomass in West Hawaiâ€i. Bulletin of the Ecological Society of America, 2020, 101, e01778.	0.2	0