Colin K Khoury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1386094/publications.pdf

Version: 2024-02-01

63 papers

3,914 citations

279798 23 h-index 54 g-index

68 all docs

68 docs citations

68 times ranked 4552 citing authors

#	Article	IF	CITATIONS
1	Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4001-4006.	7.1	757
2	Global conservation priorities for crop wild relatives. Nature Plants, 2016, 2, 16022.	9.3	415
3	When food systems meet sustainability – Current narratives and implications for actions. World Development, 2019, 113, 116-130.	4.9	377
4	Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecology and Sustainable Food Systems, 2014, 38, 369-377.	1.9	282
5	Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.	12.6	225
6	A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLoS ONE, 2010, 5, e13497.	2.5	148
7	Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytologist, 2022, 233, 84-118.	7.3	137
8	Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biological Conservation, 2015, 184, 259-270.	4.1	134
9	Origins of food crops connect countries worldwide. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160792.	2.6	125
10	Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genetic Resources and Crop Evolution, 2010, 57, 625-639.	1.6	123
11	Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecological Indicators, 2019, 98, 420-429.	6.3	102
12	Global Commitments to Conserving and Monitoring Genetic Diversity Are Now Necessary and Feasible. BioScience, 2021, 71, 964-976.	4.9	96
13	Crop wild relatives of the brinjal eggplant (<i>Solanum melongena</i>): Poorly represented in genebanks and many species at risk of extinction. American Journal of Botany, 2016, 103, 635-651.	1.7	78
14	An Inventory of Crop Wild Relatives of the United States. Crop Science, 2013, 53, 1496-1508.	1.8	77
15	Ex Situ Conservation Priorities for the Wild Relatives of Potato (Solanum L. Section Petota). PLoS ONE, 2015, 10, e0122599.	2.5	74
16	Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Frontiers in Plant Science, 2015, 6, 251.	3.6	57
17	Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus) Tj ETQq1 1 0.784	314.rgBT /	Overlock 107
18	Changing diets and the transformation of the global food system. Annals of the New York Academy of Sciences, 2020, 1478, 3-17.	3.8	55

#	Article	lF	Citations
19	Crop wild relatives of the United States require urgent conservation action. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33351-33357.	7.1	48
20	Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity. Plants, 2020, 9, 1128.	3.5	47
21	Modelled distributions and conservation status of the wild relatives of chile peppers (<i>Capsicum</i> L.). Diversity and Distributions, 2020, 26, 209-225.	4.1	41
22	Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.	7.8	40
23	Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (<i>Cucurbita</i> L.). Plants People Planet, 2020, 2, 269-283.	3.3	26
24	Science–graphic art partnerships to increase research impact. Communications Biology, 2019, 2, 295.	4.4	24
25	Crop Wild Relatives as Germplasm Resource for Cultivar Improvement in Mint (Mentha L.). Frontiers in Plant Science, 2020, 11, 1217.	3.6	22
26	Resetting the table for people and plants: Botanic gardens and research organizations collaborate to address food and agricultural plant blindness. Plants People Planet, 2019, 1, 157-163.	3.3	21
27	State of ex situ conservation of landrace groups of 25 major crops. Nature Plants, 2022, 8, 491-499.	9.3	21
28	A Road Map for Conservation, Use, and Public Engagement around North America's Crop Wild Relatives and Wild Utilized Plants. Crop Science, 2019, 59, 2302-2307.	1.8	20
29	A gap analysis modelling framework to prioritize collecting for ex situ conservation of crop landraces. Diversity and Distributions, 2020, 26, 730-742.	4.1	20
30	The Potential of Payment for Ecosystem Services for Crop Wild Relative Conservation. Plants, 2020, 9, 1305.	3.5	19
31	Robustness and accuracy of Maxent niche modelling for <i>Lactuca</i> species distributions in light of collecting expeditions. Plant Genetic Resources: Characterisation and Utilisation, 2015, 13, 153-161.	0.8	18
32	Environmental analyses to inform transitions to sustainable diets in developing countries: case studies for Vietnam and Kenya. International Journal of Life Cycle Assessment, 2020, 25, 1183-1196.	4.7	18
33	The hidden land use cost of upscaling cover crops. Communications Biology, 2020, 3, 300.	4.4	15
34	Conceptualizing sustainable diets in Vietnam: Minimum metrics and potential leverage points. Food Policy, 2020, 91, 101836.	6.0	15
35	Priorities for enhancing the ex situ conservation and use of Australian crop wild relatives. Australian Journal of Botany, 2017, 65, 638.	0.6	14
36	Wild Beans (Phaseolus L.) of North America. , 2019, , 99-127.		13

#	Article	IF	CITATIONS
37	Biocultural Diversity for Food System Transformation Under Global Environmental Change. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	13
38	Distributions and Conservation Status of Carrot Wild Relatives in Tunisia: A Case Study in the Western Mediterranean Basin. Crop Science, 2019, 59, 2317-2328.	1.8	12
39	Modelled distributions and conservation priorities of wild sorghums (<i>Sorghum</i> Moench). Diversity and Distributions, 2020, 26, 1727-1740.	4.1	11
40	The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective., 2018,, 167-188.		10
41	GapAnalysis: an R package to calculate conservation indicators using spatial information. Ecography, 2021, 44, 1000-1009.	4.5	10
42	Reconciling approaches to climate change adaptation for Colombian agriculture. Climatic Change, 2013, 119, 575-583.	3.6	9
43	North American Crop Wild Relatives, Volume 1., 2018, , .		8
44	Research Gaps and Challenges in the Conservation and Use of North American Wild Lettuce Germplasm. Crop Science, 2019, 59, 2337-2356.	1.8	8
45	Data for the calculation of an indicator of the comprehensiveness of conservation of useful wild plants. Data in Brief, 2019, 22, 90-97.	1.0	8
46	Conservation Status and Threat Assessments for North American Crop Wild Relatives. , 2018, , 189-208.		7
47	Improved Remote Sensing Methods to Detect Northern Wild Rice (Zizania palustris L.). Remote Sensing, 2020, 12, 3023.	4.0	7
48	Wild relatives of potato may bolster its adaptation to new niches under future climate scenarios. Food and Energy Security, 2022, 11, e360.	4.3	7
49	Local to continentalâ€scale variation in fitness and heritability in common bean. Crop Science, 2022, 62, 767-779.	1.8	7
50	Seeds of Success: Collateral Benefits to Agricultural Crop Improvement, Research, and Education. Crop Science, 2019, 59, 2429-2442.	1.8	6
51	Support Indigenous food system biocultural diversity. Lancet Planetary Health, The, 2020, 4, e554.	11.4	6
52	Access to crop digital information and the sharing of benefits derived from its use: Background and perspectives. Plants People Planet, 2020, 2, 178-180.	3.3	4
53	Toward Integrated Conservation of North America's Crop Wild Relatives. Natural Areas Journal, 2020, 40, 96.	0.5	4
54	Biodiversity data: The importance of access and the challenges regarding benefit sharing. Plants People Planet, 2022, 4, 2-4.	3.3	4

#	Article	IF	Citations
55	Trade and its trade-offs in the food system. Nature Food, 2020, 1, 665-666.	14.0	3
56	Wild Plant Genetic Resources in North America: An Overview., 2018,, 3-31.		2
57	Impacto del cambio climático para el 2020 en la distribución potencial de Achira (Canna indica L.) en Colombia usando tres modelos de circulación global de la familia de escenarios de emisión A2. IngenierÃa Y Región, 2015, 13, 91.	0.0	2
58	Interactions between breeding system and ploidy affect niche breadth in Solanum. Royal Society Open Science, 2022, 9, 211862.	2.4	2
59	An inventory of crop wild relatives and wildâ€utilized plants in Canada. Crop Science, 0, , .	1.8	2
60	People pollinating partnerships: harnessing collaborations between botanic gardens and agricultural research organizations on crop diversity. Acta Horticulturae, 2020, , 37-42.	0.2	1
61	Conservation and Use of the North American Plant Cornucopia: The Way Forward. , 2019, , 695-710.		0
62	Challenges to Operationalizing Sustainable Diets: Perspectives From Kenya and Vietnam. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	0
63	Distribution and ecology of wild lettuces Lactuca serriola L. and Lactuca virosa L. in central Chile. Hacquetia, 2022, 21, 173-186.	0.4	0