Atsushi J Nagano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1385089/publications.pdf

Version: 2024-02-01

172457 206112 3,445 161 29 48 citations h-index g-index papers 192 192 192 4206 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deciphering and Prediction of Transcriptome Dynamics under Fluctuating Field Conditions. Cell, 2012, 151, 1358-1369.	28.9	219
2	Os- <i>GIGANTEA</i> Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field Â. Plant Cell, 2011, 23, 1741-1755.	6.6	184
3	Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nature Communications, 2016, 7, 13295.	12.8	138
4	A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science, 2019, 364, 886-889.	12.6	109
5	Annual transcriptome dynamics in natural environments reveals plant seasonal adaptation. Nature Plants, 2019, 5, 74-83.	9.3	109
6	RNA-Seq reveals virus–virus and virus–plant interactions in nature. FEMS Microbiology Ecology, 2016, 92, fiw176.	2.7	96
7	Antagonistic Jacalin-Related Lectins Regulate the Size of ER Body-Type β-Glucosidase Complexes in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 969-980.	3.1	85
8	Northern glacial refugia and altitudinal niche divergence shape genomeâ€wide differentiation in the emerging plant model <i>Arabidopsis arenosa</i> . Molecular Ecology, 2016, 25, 3929-3949.	3.9	83
9	Microbial communities on flower surfaces act as signatures of pollinator visitation. Scientific Reports, 2015, 5, 8695.	3.3	80
10	Activation of an ER-body-localized \hat{l}^2 -Glucosidase via a Cytosolic Binding Partner in Damaged Tissues of Arabidopsis thaliana. Plant and Cell Physiology, 2005, 46, 1140-1148.	3.1	72
11	High-throughput linkage mapping of Australian white cypress pine (Callitris glaucophylla) and map transferability to related species. Tree Genetics and Genomes, 2015, 11, 1.	1.6	70
12	H3K27me3 demethylases alter HSP22 and HSP17.6C expression in response to recurring heat in Arabidopsis. Nature Communications, 2021, 12, 3480.	12.8	68
13	A Genome Scan for Genes Underlying Microgeographic-Scale Local Adaptation in a Wild Arabidopsis Species. PLoS Genetics, 2015, 11, e1005361.	3.5	63
14	NAI2 Is an Endoplasmic Reticulum Body Component That Enables ER Body Formation in $\langle i \rangle$ Arabidopsis thaliana $\langle i \rangle$ Â Â. Plant Cell, 2008, 20, 2529-2540.	6.6	62
15	Detection of Diurnal Variation of Tomato Transcriptome through the Molecular Timetable Method in a Sunlight-Type Plant Factory. Frontiers in Plant Science, 2016, 7, 87.	3 . 6	60
16	Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins Â. Plant Physiology, 2012, 161, 108-120.	4.8	51
17	FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and Guard Cells, in <i>Arabidopsis</i> i>Â. Plant Cell, 2014, 26, 4039-4052.	6.6	50
18	High-yielding rice Takanari has superior photosynthetic response to a commercial rice Koshihikari under fluctuating light. Journal of Experimental Botany, 2019, 70, 5287-5297.	4.8	49

#	Article	IF	Citations
19	Detection of Plant Viruses in Natural Environments by Using RNA-Seq. Methods in Molecular Biology, 2015, 1236, 89-98.	0.9	48
20	Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. Plant Gene, 2016, 5, 1-7.	2.3	48
21	Lasy-Seq: a high-throughput library preparation method for RNA-Seq and its application in the analysis of plant responses to fluctuating temperatures. Scientific Reports, 2019, 9, 7091.	3.3	48
22	Oxidative rearrangement of (+)-sesamin by CYP92B14 co-generates twin dietary lignans in sesame. Nature Communications, 2017, 8, 2155.	12.8	45
23	Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME Journal, 2020, 14, 506-518.	9.8	45
24	Gene regulatory network and its constituent transcription factors that control nitrogenâ€deficiency responses in rice. New Phytologist, 2020, 227, 1434-1452.	7.3	45
25	Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Theoretical and Applied Genetics, 2019, 132, 65-80.	3.6	43
26	Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Scientific Reports, 2016, 6, 21411.	3.3	41
27	Iron deficiency-inducible peptide-coding genes <i>OslMA1</i> and <i>OslMA2</i> positively regulate a major pathway of iron uptake and translocation in rice. Journal of Experimental Botany, 2021, 72, 2196-2211.	4.8	41
28	Unfolded protein response transducer IRE1-mediated signaling independent of XBP1 mRNA splicing is not required for growth and development of medaka fish. ELife, 2017, 6, .	6.0	39
29	Simultaneous evaluation of the effects of geographic, environmental and temporal isolation in ecotypic populations of Solidago virgaurea. New Phytologist, 2017, 216, 1268-1280.	7.3	36
30	Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nature Communications, 2021, 12, 1350.	12.8	36
31	Ecogenomics of cleistogamous and chasmogamous flowering: genomeâ€wide gene expression patterns from crossâ€species microarray analysis in ⟨i⟩Cardamine kokaiensis⟨/i⟩ (Brassicaceae). Journal of Ecology, 2008, 96, 1086-1097.	4.0	32
32	Genome-wide patterns of divergence and introgression after secondary contact between <i>Pungitius</i> sticklebacks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190548.	4.0	32
33	Quantitative Analysis of ER Body Morphology in an Arabidopsis Mutant. Plant and Cell Physiology, 2009, 50, 2015-2022.	3.1	29
34	Plant trichomes and a single gene GLABRA1 contribute to insect community composition on field-grown Arabidopsis thaliana. BMC Plant Biology, 2019, 19, 163.	3.6	28
35	RAD-Seq analysis of typical and minor <i>Citrus</i> accessions, including Bhutanese varieties. Breeding Science, 2016, 66, 797-807.	1.9	27
36	A recessive gene pepy-1 encoding Pelota confers resistance to begomovirus isolates of PepYLCIV and PepYLCAV in Capsicum annuum. Theoretical and Applied Genetics, 2021, 134, 2947-2964.	3.6	27

#	Article	IF	Citations
37	Endoplasmic reticulum-derived bodies enable a single-cell chemical defense in Brassicaceae plants. Communications Biology, 2020, 3, 21.	4.4	26
38	Phylogenetic relationships of Aurantioideae (Rutaceae) based on RAD-Seq. Tree Genetics and Genomes, 2018, 14, 1.	1.6	24
39	Niche conservatism promotes speciation in cycads: the case of <i>Dioon merolae</i> (Zamiaceae) in Mexico. New Phytologist, 2020, 227, 1872-1884.	7.3	24
40	The ER body, a new organelle in <i>Arabidopsis thaliana</i> , requires NAI2 for its formation and accumulates specific AŸ-glucosidases. Plant Signaling and Behavior, 2009, 4, 849-852.	2.4	23
41	Circadian Oscillation of the Lettuce Transcriptome under Constant Light and Light–Dark Conditions. Frontiers in Plant Science, 2016, 7, 1114.	3.6	23
42	Evidence for sympatric speciation in a Wallacean ancient lake. Evolution; International Journal of Organic Evolution, 2019, 73, 1898-1915.	2.3	23
43	ERMO3/MVP1/GOLD36 Is Involved in a Cell Type-Specific Mechanism for Maintaining ER Morphology in Arabidopsis thaliana. PLoS ONE, 2012, 7, e49103.	2.5	22
44	The population genomic signature of environmental association and gene flow in an ecologically divergent tree species <i>Metrosideros polymorpha</i> (Myrtaceae). Molecular Ecology, 2017, 26, 1515-1532.	3.9	22
45	Seasonal plasticity and diel stability of H3K27me3 in natural fluctuating environments. Nature Plants, 2020, 6, 1091-1097.	9.3	21
46	Maintaining higher leaf photosynthesis after heading stage could promote biomass accumulation in rice. Scientific Reports, 2021, 11, 7579.	3.3	21
47	Genetic Properties Responsible for the Transgressive Segregation of Days to Heading in Rice. G3: Genes, Genomes, Genetics, 2019, 9, 1655-1662.	1.8	20
48	Characterization and quantitative trait locus mapping of late-flowering from a Thai soybean cultivar introduced into a photoperiod-insensitive genetic background. PLoS ONE, 2019, 14, e0226116.	2.5	20
49	Genomic predictions and genome-wide association studies based on RAD-seq of quality-related metabolites for the genomics-assisted breeding of tea plants. Scientific Reports, 2020, 10, 17480.	3.3	20
50	Repressive chromatin modification underpins the long-term expression trend of a perennial flowering gene in nature. Nature Communications, 2020, 11, 2065.	12.8	20
51	Heap: a highly sensitive and accurate SNP detection tool for low-coverage high-throughput sequencing data. DNA Research, 2017, 24, 397-405.	3.4	19
52	Analyses of single nucleotide polymorphisms identified by ddRAD-seq reveal genetic structure of tea germplasm and Japanese landraces for tea breeding. PLoS ONE, 2019, 14, e0220981.	2.5	19
53	Diurnal metabolic regulation of isoflavones and soyasaponins in soybean roots. Plant Direct, 2020, 4, e00286.	1.9	19
54	From the laboratory to the field: assaying histone methylation at <i>FLOWERING LOCUS C</i> in naturally growing <i>Arabidopsis halleri</i> . Genes and Genetic Systems, 2016, 91, 15-26.	0.7	18

#	Article	lF	CITATIONS
55	Identification of quantitative trait loci for increased î±-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC Plant Biology, 2019, 19, 510.	3.6	18
56	Genomic reconstruction of 100 000-year grassland history in a forested country: population dynamics of specialist forbs. Biology Letters, 2019, 15, 20180577.	2.3	17
57	Mitochondrial introgression by ancient admixture between two distant lacustrine fishes in Sulawesi Island. PLoS ONE, 2021, 16, e0245316.	2.5	17
58	Arabidopsis mutants affecting oxylipin signaling in photo-oxidative stress responses. Plant Physiology and Biochemistry, 2014, 81, 90-95.	5.8	16
59	Does genomic variation in a foundation species predict arthropod community structure in a riparian forest?. Molecular Ecology, 2018, 27, 1284-1295.	3.9	15
60	Phylogeographic analysis of the East Asian goldenrod (Solidago virgaurea complex, Asteraceae) reveals hidden ecological diversification with recurrent formation of ecotypes. Annals of Botany, 2018, 121, 489-500.	2.9	14
61	Assessment of genetic diversity in Coho salmon (Oncorhynchus kisutch) populations with no family records using ddRAD-seq. BMC Research Notes, 2018, 11, 548.	1.4	14
62	Construction of High-Resolution RAD-Seq Based Linkage Map, Anchoring Reference Genome, and QTL Mapping of the Sex Chromosome in the Marine Medaka <i>Oryzias melastigma</i> . G3: Genes, Genomes, Genetics, 2019, 9, 3537-3545.	1.8	14
63	Field multi-omics analysis reveals a close association between bacterial communities and mineral properties in the soybean rhizosphere. Scientific Reports, 2021, 11, 8878.	3.3	14
64	Using a two-stage convolutional neural network to rapidly identify tiny herbivorous beetles in the field. Ecological Informatics, 2021, 66, 101466.	5.2	14
65	A Survey on Plant Viruses in Natural Brassicaceae Communities Using RNA-Seq. Microbial Ecology, 2019, 78, 113-121.	2.8	13
66	Genetic isolation by distance in the yellowfin goby populations revealed by RAD sequencing. Ichthyological Research, 2020, 67, 98-104.	0.8	13
67	Radiation history of Asian Asarum (sect. Heterotropa, Aristolochiaceae) resolved using a phylogenomic approach based on double-digested RAD-seq data. Annals of Botany, 2020, 126, 245-260.	2.9	13
68	Species divergence and repeated ancient hybridization in a Sulawesian lake system. Journal of Evolutionary Biology, 2021, 34, 1767-1780.	1.7	13
69	Phylogeographic testing of alternative histories of singleâ€origin versus parallel evolution of early flowering serpentine populations of <i>Picris hieracioides</i> L. (Asteraceae) in Japan. Ecological Research, 2018, 33, 537-547.	1.5	12
70	Auxin Contributes to the Intraorgan Regulation of Gene Expression in Response to Shade. Plant Physiology, 2018, 177, 847-862.	4.8	12
71	Noise–plasticity correlations of gene expression in the multicellular organism Arabidopsis thaliana. Journal of Theoretical Biology, 2015, 387, 13-22.	1.7	11
72	A GLABRA1 ortholog on LG A9 controls trichome number in the Japanese leafy vegetables Mizuna and Mibuna (Brassica rapa L. subsp. nipposinica L. H. Bailey): evidence from QTL analysis. Journal of Plant Research, 2017, 130, 539-550.	2.4	11

#	Article	IF	CITATIONS
73	Construction of a high-density linkage map for bronze loquat using RAD-Seq. Scientia Horticulturae, 2019, 251, 59-64.	3.6	11
74	A spinach genome assembly with remarkable completeness, and its use for rapid identification of candidate genes for agronomic traits. DNA Research, 2021, 28 , .	3.4	11
75	Transcriptome Analysis of Plant Hormone-Related Tomato (Solanum lycopersicum) Genes in a Sunlight-Type Plant Factory. PLoS ONE, 2015, 10, e0143412.	2.5	11
76	Effect of differences in light source environment on transcriptome of leaf lettuce (Lactuca sativa L.) to optimize cultivation conditions. PLoS ONE, 2022, 17, e0265994.	2.5	11
77	AtMap1: a DNA microarray for genomic deletion mapping in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 1058-1065.	5.7	10
78	Transcriptional Variation in Glucosinolate Biosynthetic Genes and Inducible Responses to Aphid Herbivory on Field-Grown Arabidopsis thaliana. Frontiers in Genetics, 2019, 10, 787.	2.3	10
79	Neighbor GWAS: incorporating neighbor genotypic identity into genome-wide association studies of field herbivory. Heredity, 2021, 126, 597-614.	2.6	10
80	Analysis of Genetic Diversity and Population Structure of Orobanche foetida Populations From Tunisia Using RADseq. Frontiers in Plant Science, 2021, 12, 618245.	3.6	10
81	Fillable and unfillable gaps in plant transcriptome under field and controlled environments. Plant, Cell and Environment, 2022, 45, 2410-2427.	5.7	10
82	Genetic diversity of loquat (Eriobotrya japonica) revealed using RAD-Seq SNP markers. Scientific Reports, 2022, 12, .	3.3	10
83	Functional divergence of duplicate genes several million years after gene duplication in Arabidopsis. DNA Research, 2018, 25, 327-339.	3.4	9
84	Genet assignment and population structure analysis in a clonal forest-floor herb, Cardamine leucantha, using RAD-seq. AoB PLANTS, 2020, 12, plz080.	2.3	9
85	Genomic Basis of Transcriptome Dynamics in Rice under Field Conditions. Plant and Cell Physiology, 2021, 62, 1436-1445.	3.1	9
86	Combination of genetic analysis and ancient literature survey reveals the divergence of traditional Brassica rapa varieties from Kyoto, Japan. Horticulture Research, 2021, 8, 132.	6.3	9
87	An efficient earlyâ€pooling protocol for environmental <scp>DNA</scp> metabarcoding. Environmental DNA, 2022, 4, 1212-1228.	5.8	9
88	Broad distribution spectrum from Gaussian to power law appears in stochastic variations in RNA-seq data. Scientific Reports, 2018, 8, 8339.	3.3	8
89	Classification of tea (Camellia sinensis) landraces and cultivars in Kyoto, Japan and other regions, based on simple sequence repeat markers and restriction site-associated DNA sequencing analysis. Genetic Resources and Crop Evolution, 2019, 66, 441-451.	1.6	8
90	Genomic and phenotypic consequences of two independent secondary contact zones between allopatric lineages of the anadromous ice goby Leucopsarion petersii. Heredity, 2020, 124, 223-235.	2.6	8

#	Article	IF	Citations
91	Fluorescent protein-based imaging and tissue-specific RNA-seq analysis of Arabidopsis hydathodes. Journal of Experimental Botany, 2021, 72, 1260-1270.	4.8	8
92	Inferring historical survivals of climate relicts: the effects of climate changes, geography, and population-specific factors on herbaceous hydrangeas. Heredity, 2021, 126, 615-629.	2.6	8
93	PepYLCIV and PepYLCAV resistance gene Pepy-2 encodes DFDGD-Class RNA-dependent RNA polymerase in Capsicum. Theoretical and Applied Genetics, 2022, 135, 2437-2452.	3.6	8
94	Genetic mapping of local adaptation along the altitudinal gradient in Abies sachalinensis. Tree Genetics and Genomes, 2017, 13, 1.	1.6	7
95	ddRAD-seq based phylogeographic study of Sargassum thunbergii (Phaeophyceae, Heterokonta) around Japanese coast. Marine Environmental Research, 2018, 140, 104-113.	2.5	7
96	Frequent chloroplast capture among <i>Isodon</i> (Lamiaceae) species in Japan revealed by phylogenies based on variation in chloroplast and nuclear DNA. Plant Species Biology, 2019, 34, 127-137.	1.0	7
97	Genetic Architecture of Innate Fear Behavior in Chickens. Behavior Genetics, 2020, 50, 411-422.	2.1	7
98	A ddRAD-based population genetics and phylogenetics of an endangered freshwater fish from Japan. Conservation Genetics, 2020, 21, 641-652.	1.5	7
99	Integrative genomic phylogeography reveals signs of mitonuclear incompatibility in a natural hybrid goby population. Evolution; International Journal of Organic Evolution, 2021, 75, 176-194.	2.3	7
100	Elucidation of Japanese pepper (Zanthoxylum piperitum De Candolle) domestication using RAD-Seq. Scientific Reports, 2021, 11, 6464.	3.3	7
101	Phylogeography of the East Asian grassland plant, Viola orientalis (Violaceae), inferred from plastid and nuclear restriction site-associated DNA sequencing data. Journal of Plant Research, 2021, 134, 1181-1198.	2.4	7
102	FIT: statistical modeling tool for transcriptome dynamics under fluctuating field conditions. Bioinformatics, 2017, 33, 1672-1680.	4.1	6
103	A first genetic map in the genus Streptocarpus generated with RAD sequencing based SNP markers. South African Journal of Botany, 2018, 117, 158-168.	2.5	6
104	Profiling SNP and Nucleotide Diversity to Characterize Mekong Delta Rice Landraces in Southeast Asian Populations. Plant Genome, 2019, 12, 190042.	2.8	6
105	Multiple waves of freshwater colonization of the three-spined stickleback in the Japanese Archipelago. BMC Evolutionary Biology, 2020, 20, 143.	3.2	6
106	Memory of Temperature in the Seasonal Control of Flowering Time: An Unexplored Link Between Meteorology and Molecular Biology. , 2013, , 195-215.		6
107	New taxa of Rhododendron tschonoskii alliance (Ericaceae) from East Asia. PhytoKeys, 2019, 134, 97-114.	1.0	6
108	Identification of QTLs conferring resistance to begomovirus isolate of PepYLCIV in Capsicum chinense. Euphytica, 2022, 218, 1.	1.2	6

#	Article	IF	CITATIONS
109	Genetic basis for the evolution of pelvicâ€fin brooding, a new mode of reproduction, in a Sulawesian fish. Molecular Ecology, 2022, 31, 3798-3811.	3.9	6
110	First report of Pelargonium zonate spot virus from wild Brassicaceae plants in Japan. Journal of General Plant Pathology, 2017, 83, 329-332.	1.0	5
111	Quantitative trait loci mapping for the shear force value in breast muscle of F2chickens. Poultry Science, 2019, 98, 1096-1101.	3.4	5
112	Mapping of QTLs controlling epicotyl length in adzuki bean (<i>Vigna angularis</i>). Breeding Science, 2021, 71, 208-216.	1.9	5
113	Neighbor QTL: an interval mapping method for quantitative trait loci underlying plant neighborhood effects. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	5
114	Evolutionary effects of geographic and climatic isolation between Rhododendron tsusiophyllum populations on the Izu Islands and mainland Honshu of Japan. Heredity, 2021, 126, 859-868.	2.6	5
115	Geographic and subsequent biotic isolations led to a diversity anomaly of section ⟨i⟩Heterotropa⟨li⟩ (genus ⟨i⟩Asarum⟨li⟩: Aristolochiaceae) in insular versus continental regions of the Sinoâ€apanese Floristic Region. Journal of Biogeography, 2021, 48, 1917-1929.	3.0	5
116	Speciation along a latitudinal gradient: The origin of the Neotropical cycad sister pair ⟨i⟩Dioon sonorense⟨ i⟩â€"⟨i⟩D. vovidesii⟨ i⟩ (Zamiaceae). Ecology and Evolution, 2021, 11, 6962-6976.	1.9	5
117	Genetic structure of Pacific crown-of-thorns starfish (Acanthaster cf. solaris) in southern Japan based on genome-wide RADseq analysis. Coral Reefs, 2021, 40, 1379-1385.	2.2	5
118	Phylogeographic analysis of Saxifraga fortunei complex (Saxifragaceae) reveals multiple origins of morphological and ecological variations in the Japanese Archipelago. Molecular Phylogenetics and Evolution, 2021, 163, 107230.	2.7	5
119	Transcriptome Analysis of a Cultivar of Green Perilla (<1>Perilla frutescens 1) Using Genetic Similarity with Other Plants via Public Databases. Environmental Control in Biology, 2017, 55, 77-83.	0.7	5
120	Visualization of phosphorus reâ€translocation and phosphate transporter expression profiles in a shortened annual cycle system of poplar. Plant, Cell and Environment, 2022, 45, 1749-1764.	5.7	5
121	The basic leucine zipper transcription factor <scp>OsbZIP83</scp> and the glutaredoxins <scp>OsGRX6</scp> and <scp>OsGRX9</scp> facilitate rice iron utilization under the control of <scp>OsHRZ</scp> ubiquitin ligases. Plant Journal, 2022, , .	5.7	5
122	Deeply divergent freshwater fish species within a single river system in central Sulawesi. Molecular Phylogenetics and Evolution, 2022, 173, 107519.	2.7	5
123	Mapping of Quantitative Trait Loci for Growth and Carcass-Related Traits in Chickens Using a Restriction-Site Associated DNA Sequencing Method. Journal of Poultry Science, 2019, 56, 166-176.	1.6	4
124	Pepper vein yellows virus 9: a novel polerovirus isolated from chili pepper in Indonesia. Archives of Virology, 2020, 165, 3017-3021.	2.1	4
125	Characterization of rhizome transcriptome and identification of a rhizomatous ER body in the clonal plant Cardamine leucantha. Scientific Reports, 2020, 10, 13291.	3.3	4
126	Genetic analysis of body weight in wild populations of medaka fish from different latitudes. PLoS ONE, 2020, 15, e0234803.	2.5	4

#	Article	IF	Citations
127	Mapping of Quantitative Trait Loci Controlling Egg-Quality and -Production Traits in Japanese Quail (Coturnix japonica) Using Restriction-Site Associated DNA Sequencing. Genes, 2021, 12, 735.	2.4	4
128	Quantitative trait loci for growth-related traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Molecular Genetics and Genomics, 2021, 296, 1147-1159.	2.1	4
129	Do colour-morphs of an amphidromous goby represent different species? Taxonomy of Lentipes (Gobiiformes) from Japan and Palawan, Philippines, with phylogenomic approaches. Systematics and Biodiversity, 0, , 1-33.	1.2	4
130	Genetic consequences of being a dwarf: do evolutionary changes in life-history traits influence gene flow patterns in populations of the world's smallest goldenrod?. Annals of Botany, 2020, 126, 163-177.	2.9	3
131	Selection of transcripts related to low-temperature tolerance using RNA sequencing from F2 plants between japonica and indica rice (Oryza sativa L.) cultivars. Functional Plant Biology, 2021, 48, 984.	2.1	3
132	Resource partitioning is not coupled with assortative mating in sympatrically divergent ricefish in a Wallacean ancient lake. Journal of Evolutionary Biology, 2021, 34, 1133-1143.	1.7	3
133	Gudgeon fish with and without genetically determined countershading coexist in heterogeneous littoral environments of an ancient lake. Ecology and Evolution, 2021, 11, 13283-13294.	1.9	3
134	Mapping of quantitative trait loci underlying a magic trait in ongoing ecological speciation. BMC Genomics, 2021, 22, 615.	2.8	3
135	Hydrometeorology for plant omics: Potential evaporation as a key index for transcriptome in rice. Environmental and Experimental Botany, 2022, 196, 104724.	4.2	3
136	Microevolution of <i>Pieris</i> butterfly genes involved in host plant adaptation along a host plant community cline. Molecular Ecology, 2022, 31, 3083-3097.	3.9	3
137	Selection of Transcripts Affecting Initial Growth Rate of Rice Backcrossed Inbred Lines Using RNA Sequencing Data. Frontiers in Plant Science, 2018, 9, 1880.	3.6	2
138	Estimation of the Circadian Phase by Oscillatory Analysis of the Transcriptome in Plants. Environmental Control in Biology, 2018, 56, 67-72.	0.7	2
139	Simplification of circadian rhythm measurement using species-independent time-indicated genes. Current Plant Biology, 2019, 19, 100118.	4.7	2
140	Genetic analysis of Taishu horses on and off Tsushima Island: Implications for conservation. Journal of Equine Science, 2019, 30, 33-40.	0.8	2
141	Phylogeographic and demographic modeling analyses of the multiple origins of the rheophytic goldenrod Solidago yokusaiana Makino. Heredity, 2021, 126, 831-845.	2.6	2
142	Low-cost and Multiplexable Whole mRNA-Seq Library Preparation Method with Oligo-dT Magnetic Beads for Illumina Sequencing Platforms. Bio-protocol, 2020, 10, e3496.	0.4	2
143	Isolation and Characterization of 11 Microsatellite Markers for Glochidion acuminatum (Phyllanthaceae). Applications in Plant Sciences, 2014, 2, 1400045.	2.1	1
144	Stacksbinder: online tool for visualizing and summarizing Stacks output to aid filtering of SNPs identified using RAD sequencing. Conservation Genetics Resources, 2020, 12, 1-3.	0.8	1

#	Article	IF	CITATIONS
145	Characterization of citrus leaf blotch virus from Nandina domestica †Otafukunanten†M. Journal of General Plant Pathology, 2021, 87, 113-116.	1.0	1
146	Phylogeography of a canopyâ€forming kelp, Eisenia bicyclis (Laminariales, Phaeophyceae), based on a genomeâ€wide sequencing analysis. Journal of Phycology, 2022, , .	2.3	1
147	Bimodal expression level polymorphisms in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2012, 7, 864-873.	2.4	0
148	Relationship between plant reproduction and environmental stress. Ikushugaku Kenkyu, 2020, 22, 62-67.	0.3	0
149	Mating system evolution and genetic structure of diploid sexual populations of Cyrtomium falcatum in Japan. Scientific Reports, 2021, 11, 3124.	3.3	0
150	Genetic basis for variation in the number of cephalic pores in a hybrid zone between closely related species of goby, <i>Gymnogobius breunigii </i> and <i>Gymnogobius castaneus </i> . Biological Journal of the Linnean Society, 2021, 133, 143-154.	1.6	0
151	Relationship between gene regulation network structure and prediction accuracy in high dimensional regression. Scientific Reports, 2021, 11, 11483.	3.3	0
152	Growth and Environmental Change-Independent Genes Associated with Clock Gene & lt;i>TOC1 in Green Perilla. Environmental Control in Biology, 2018, 56, 137-142.	0.7	0
153	Title is missing!. , 2019, 14, e0226116.		0
154	Title is missing!. , 2019, 14, e0226116.		0
155	Title is missing!. , 2019, 14, e0226116.		0
156	Title is missing!. , 2019, 14, e0226116.		0
157	Genetic analysis of body weight in wild populations of medaka fish from different latitudes. , 2020, 15, e0234803.		0
158	Genetic analysis of body weight in wild populations of medaka fish from different latitudes. , 2020, 15, e0234803.		0
159	Genetic analysis of body weight in wild populations of medaka fish from different latitudes. , 2020, 15, e0234803.		0
160	Genetic analysis of body weight in wild populations of medaka fish from different latitudes. , 2020, 15, e0234803.		0
161	Back Cover Image. Plant, Cell and Environment, 2022, 45, .	5.7	0