List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1384968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	1.5	1,929
3	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
4	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
5	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	15.6	825
6	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
7	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	6.5	716
8	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
9	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
10	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
11	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
12	The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1427-1446.	1.6	156
13	THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT?. Astrophysical Journal, 2013, 766, 30.	1.6	148
14	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
15	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	142
16	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
17	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	1.6	128
18	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	1.6	126

#	Article	IF	CITATIONS
19	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
20	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	1.6	121
21	STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES. Astrophysical Journal, 2011, 739, 86.	1.6	121
22	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	1.6	120
23	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	0.7	120
24	Nuclear equation of state from observations of short gamma-ray burst remnants. Physical Review D, 2014, 89, .	1.6	116
25	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
26	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	1.6	110
27	The Swift short gamma-ray burst rate density: implications for binary neutron star merger rates. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2668-2673.	1.6	108
28	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
29	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
30	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	1.6	104
31	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
32	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
33	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
34	On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers. Monthly Notices of the Royal Astronomical Society, 2013, 431, 882-899.	1.6	91
35	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
36	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	1.6	90

#	Article	IF	CITATIONS
37	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
38	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
39	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
40	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
41	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
42	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	1.5	78
43	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
44	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
45	Cosmology and dark energy from joint gravitational wave-GRB observations. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015.	1.9	72
46	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
47	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
48	THE ULTRA-LONG GRB 111209A. II. PROMPT TO AFTERGLOW AND AFTERGLOW PROPERTIES. Astrophysical Journal, 2013, 779, 66.	1.6	67
49	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
50	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
51	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
52	GRANDMA observations of advanced LIGO's and advanced Virgo's third observational campaign. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5518-5539.	1.6	63
53	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
54	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	1.6	60

#	Article	IF	CITATIONS
55	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	1.6	60
56	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
57	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
58	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
59	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	1.6	54
60	The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3904-3927.	1.6	53
61	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
62	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
63	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
64	The Swift gamma-ray burst redshift distribution: selection biases and optical brightness evolution at high z?. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2141-2149.	1.6	46
65	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
66	Capturing the electromagnetic counterparts of binary neutron star mergers through low-latency gravitational wave triggers. Monthly Notices of the Royal Astronomical Society, 2016, 459, 121-139.	1.6	43
67	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
68	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
69	Joint gravitational wave – gamma-ray burst detection rates in the aftermath of GW170817. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1435-1447.	1.6	38
70	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
71	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	1.6	35
72	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	1.6	35

#	Article	IF	CITATIONS
73	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
74	Advanced Gravitational Wave Detectors. , 2012, , .		33
75	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
76	Search for Gravitational Waves Associated with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.</mml:math 	2.9	32
77	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
78	Gravitational wave background from sub-luminous GRBs: prospects for second- and third-generation detectors. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2123-2136.	1.6	30
79	The gravitational wave background from neutron star birth throughout the cosmos. Monthly Notices of the Royal Astronomical Society, 2004, 351, 1237-1246.	1.6	29
80	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
81	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
82	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
83	Observational upper limits on the gravitational wave production of core collapse supernovae. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L132-L136.	1.2	25
84	The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education. Publications of the Astronomical Society of Australia, 2010, 27, 331-339.	1.3	23
85	The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO. Journal of Physics: Conference Series, 2008, 122, 012001.	0.3	21
86	A redshift–observation time relation for gamma-ray bursts: evidence of a distinct subluminous population. Monthly Notices of the Royal Astronomical Society, 2013, 428, 167-181.	1.6	21
87	Fall back accretion and energy injections in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3642-3650.	1.6	21
88	Constraining the rate and luminosity function of Swift gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2014, 444, 15-28.	1.6	21
89	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
90	AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 084005.	1.5	20

#	Article	IF	CITATIONS
91	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
92	ACIGA's high optical power test facility. Classical and Quantum Gravity, 2004, 21, S887-S893.	1.5	19
93	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
94	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	1.5	16
95	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	1.5	14
96	Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 415, L26-L30.	1.2	14
97	Multi-messenger astrophysics with THESEUS in the 2030s. Experimental Astronomy, 2021, 52, 245-275.	1.6	12
98	The detection efficiency of on-axis short gamma-ray burst optical afterglows triggered by aLIGO/Virgo. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3575-3580.	1.6	9
99	Hunting Gravitational Waves with Multi-Messenger Counterparts: Australia's Role. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	9
100	The gravitational wave 'probability event horizon' for double neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2005, 364, 807-812.	1.6	7
101	Technology developments for ACIGA high power test facility for advanced interferometry. Classical and Quantum Gravity, 2005, 22, S199-S208.	1.5	6
102	Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4385-4395.	1.6	6
103	An Improved Method for Estimating Source Densities Using the Temporal Distribution of Cosmological Transients. Astrophysical Journal, 2007, 666, L65-L68.	1.6	5
104	Application of the probability event horizon filter to constrain the local rate density of binary black hole inspirals with advanced LIGO. Monthly Notices of the Royal Astronomical Society, 2007, 377, 719-730.	1.6	5
105	The Zadko Telescope: Exploring the Transient Universe. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	5
106	Selection biases in the gamma-ray burst <i>E</i> iso–Â <i>L</i> opt, X correlation. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 449, L6-L10.	1.2	3
107	Australia's Role in Gravitational Wave Detection. Publications of the Astronomical Society of Australia, 2003, 20, 223-241.	1.3	2
108	Identifying deterministic signals in simulated gravitational wave data: algorithmic complexity and the surrogate data method. Classical and Quantum Gravity, 2006, 23, 1801-1814.	1.5	2

#	Article	IF	CITATIONS
109	Network analysis and multi-messenger astronomy. , 0, , 89-110.		2
110	Fast response electromagnetic follow-ups from low latency GW triggers. Journal of Physics: Conference Series, 2016, 716, 012009.	0.3	2
111	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
112	The gravitational wave background from neutron star formation and bar-mode instabilities. Classical and Quantum Gravity, 2004, 21, S551-S555.	1.5	1
113	Status of ACIGA High Power Test Facility for advanced interferometry. , 2004, , .		1
114	Fast temporal evolution of a cosmic gravitational wave background spectrum. Classical and Quantum Gravity, 2005, 22, 723-735.	1.5	1
115	Using temporal distributions of transient events to characterize cosmological source populations. , 2010, , .		0
116	Gravitational waves. , 0, , 3-15.		0
117	Sources of gravitational waves. , 0, , 16-41.		0
118	Gravitational wave detectors. , 0, , 42-70.		0
119	GRB160203A: an exploration of lumpy space. Monthly Notices of the Royal Astronomical Society, 2021, 504, 716-722.	1.6	0