Runwei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1384963/publications.pdf

Version: 2024-02-01

236925 189892 2,614 75 25 50 citations h-index g-index papers 76 76 76 3745 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cu ₂ O/CeO ₂ Photoâ€electrochemical Water Splitting: A Nanocomposite with an Efficient Interfacial Transmission Path under the Coâ€action of a p–n Heterojunction and Microâ€mesocrystals. Chemistry - A European Journal, 2022, 28, .	3.3	7
2	Yolk–shell smart Pickering nanoreactors for base-free one-pot cascade Knoevenagel-hydrogenation with high catalytic efficiency in water. Inorganic Chemistry Frontiers, 2022, 9, 1395-1405.	6.0	5
3	Functionalized Hierarchical ZSM-5 Zeolites for the Viscosity Reduction of Heavy Oil at Low Temperature. Chemical Research in Chinese Universities, 2022, 38, 1083-1088.	2.6	6
4	Amorphous-to-Crystalline Transformation: General Synthesis of Hollow Structured Covalent Organic Frameworks with High Crystallinity. Journal of the American Chemical Society, 2022, 144, 6583-6593.	13.7	77
5	ZSM-5@Rh amphiphilic nanoreactor: Efficient reduction of nitrobenzene under mild conditions. Inorganic Chemistry Communication, 2022, 140, 109409.	3.9	0
6	Synthesize C@SiO2 with independent spaces produced from carbon slices by the confinement of the silica shell for toluene adsorption. Microporous and Mesoporous Materials, 2022, 341, 112084.	4.4	2
7	2D/2D Interface Engineering Promotes Charge Separation of Mo ₂ C/g-C ₃ N ₄ Nanojunction Photocatalysts for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Diterfaces, 2022, 14, 31782-31791.	8.0	30
8	In situ self-assembly of mesoporous Zn-Cd-Mo-S quaternary metal sulfides with double heterojunction synergistic charge transfer for boosting photocatalytic hydrogen production. Journal of Alloys and Compounds, 2022, 921, 166066.	5.5	10
9	Interface engineering of hierarchical photocatalyst for enhancing photoinduced charge transfers. Applied Catalysis B: Environmental, 2021, 283, 119632.	20.2	23
10	Photoactive amphiphilic nanoreactor: A chloroplast-like catalyst for natural oxidation of alcohols. Chemical Engineering Journal, 2021, 408, 127243.	12.7	4
11	Cytosine-Co assemblies derived CoNx rich Co-NCNT as efficient tri-functional electrocatalyst. Journal of Colloid and Interface Science, 2021, 585, 276-286.	9.4	11
12	Salt of Organosilicon Framework as a Novel Emulsifier for Various Water–Oil Biphasic Systems and a Catalyst for Dibromination of Olefins in an Aqueous Medium. ACS Applied Materials & Diterfaces, 2021, 13, 33693-33703.	8.0	3
13	Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nature Communications, 2021, 12, 4968.	12.8	43
14	Ultrasmall amphiphilic zeolitic nanoreactors for the aerobic oxidation of alcohols in water. Nanoscale, 2021, 13, 9229-9235.	5.6	1
15	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	13.8	344
16	Hollow Nanoâ€Mesosilica Spheres Containing Rhodium Nanoparticles Supported on Nitrogenâ€Doped Carbon: An Efficient Catalyst for the Reduction of Nitroarenes under Mild Conditions. ChemPlusChem, 2020, 85, 247-253.	2.8	6
17	"Water-in-salt―electrolyte enhanced high voltage aqueous supercapacitor with carbon electrodes derived from biomass waste-ground grain hulls. RSC Advances, 2020, 10, 35545-35556.	3.6	28
18	Synthesis of narrow-band curled carbon nitride nanosheets with high specific surface area for hydrogen evolution from water splitting by low-temperature aqueous copolymerization to form copolymers. RSC Advances, 2020, 10, 28848-28855.	3.6	13

#	Article	IF	CITATIONS
19	Hemishell Zeolites Synthesized by Asymmetric Modification as Biphasic Nanoreactors with Tunable Amphiphilicity for Catalysis of Cascade Reactions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40684-40691.	8.0	11
20	Facile Formation of Anatase Nanoparticles on H-Titanate Nanotubes at Low Temperature for Efficient Visible Light-Driven Degradation of Organic Pollutants. Catalysts, 2020, 10, 695.	3.5	1
21	In Situ Selfâ€Polymerization to Form Hollow Graphitized Carbon Nanocages with Embedded Cobalt Nanoparticles for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2020, 26, 13295-13304.	3.3	5
22	Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon, 2019, 146, 671-679.	10.3	117
23	Tofu-derived nitrogen-doped mesoporous carbon materials as metal-free catalyst for oxygen reduction reaction. Biomass Conversion and Biorefinery, 2019, 9, 401-409.	4.6	10
24	Synthesis and Characterization of Cu Decorated Zeolite A@Void@Et-PMO Nanocomposites for Removal of Methylene Blue by a Heterogeneous Fenton Reaction. Chemical Research in Chinese Universities, 2019, 35, 363-369.	2.6	4
25	Encapsulating mesoporous metal nanoparticles: towards a highly active and stable nanoreactor for oxidative coupling reactions in water. Chemical Communications, 2019, 55, 5898-5901.	4.1	13
26	An amphiphilic organosilicon framework (AOF): a new solid Pickering catalyst carrier. Inorganic Chemistry Frontiers, 2019, 6, 1253-1260.	6.0	4
27	Surface-induced synthesis of hybrid N, P functionalized hierarchically porous carbon nanosheets for lithium-ion batteries. Microporous and Mesoporous Materials, 2019, 282, 197-204.	4.4	11
28	Synthesis of Li ₄ Ti ₅ O ₁₂ with Tunable Morphology Using <scp>l</scp> â€Cysteine and Its Enhanced Lithium Storage Properties. ChemPlusChem, 2019, 84, 123-129.	2.8	4
29	Structure regulation of amino acids derived nitrogen doped porous carbon nanosheet through facile solid state assembly method. Microporous and Mesoporous Materials, 2019, 277, 36-44.	4.4	9
30	Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: Boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy, 2018, 47, 463-473.	16.0	189
31	Synthesis of novel Au@Void@Nb ₂ O ₅ coreâ€"shell nanocomposites with enhanced photocatalytic activity. Dalton Transactions, 2018, 47, 3400-3407.	3.3	16
32	Fabrication of 3D heteroatom-doped porous carbons from self-assembly of chelate foams <i>via</i> solid state method. Inorganic Chemistry Frontiers, 2018, 5, 656-664.	6.0	13
33	Synthesis and Visible-light Photocatalytic Performance of C-doped Nb2O5 with High Surface Area. Chemical Research in Chinese Universities, 2018, 34, 274-278.	2.6	4
34	lodide-mediated templating synthesis of highly porous rhodium nanospheres for enhanced dehydrogenation of ammonia borane. Journal of Materials Chemistry A, 2018, 6, 24166-24174.	10.3	26
35	Construction of an Fe, N and S-codoped ultra-thin carbon nanosheet superstructure for the oxygen reduction reaction. Chemical Communications, 2018, 54, 12974-12977.	4.1	25
36	Janus N-Doped Carbon@Silica Hollow Spheres as Multifunctional Amphiphilic Nanoreactors for Base-Free Aerobic Oxidation of Alcohols in Water. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33474-33483.	8.0	65

#	Article	IF	CITATIONS
37	Selfâ€Assembly of Antisite Defectless nanoâ€LiFePO ₄ @C/Reduced Graphene Oxide Microspheres for Highâ€Performance Lithiumâ€lon Batteries. ChemSusChem, 2018, 11, 2255-2261.	6.8	25
38	Sustainable Synthesis of Hierarchically Porous Silicalite-1 Zeolite by Steam-assisted Crystallization of Solid Raw Materials Without Secondary Templates. Chemical Research in Chinese Universities, 2018, 34, 350-357.	2.6	8
39	Facile Conversion of Radish to Nitrogenâ€Doped Mesoporous Carbon as Effective Metalâ€Free Oxygen Reduction Electrocatalysts. ChemNanoMat, 2018, 4, 954-963.	2.8	15
40	Designing nanographitic domains in N-doped porous carbon foam for high performance supercapacitors. Carbon, 2018, 139, 1152-1159.	10.3	60
41	Yolk–shell Fe ₃ O ₄ @SiO ₂ @PMO: amphiphilic magnetic nanocomposites as an adsorbent and a catalyst with high efficiency and recyclability. Green Chemistry, 2017, 19, 1336-1344.	9.0	59
42	Cobalt Phosphide Modified Titanium Oxide Nanophotocatalysts with Significantly Enhanced Photocatalytic Hydrogen Evolution from Water Splitting. Small, 2017, 13, 1603301.	10.0	132
43	A novel architecture of dandelion-like Mo ₂ C/TiO ₂ heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. Journal of Materials Chemistry A, 2017, 5, 10591-10598.	10.3	113
44	Engineering growth defects: a new route towards hierarchical ZSM-5 zeolite with high-density intracrystalline mesopores. CrystEngComm, 2017, 19, 7088-7094.	2.6	12
45	In situ synthesis of concentric C@MoS2 core–shell nanospheres as anode for lithium ion battery. Journal of Materials Science, 2017, 52, 13183-13191.	3.7	22
46	Heterogeneous Nanostructure Based on 1T-Phase MoS ₂ for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Materials & https://www.amp.com/applied/sub-25297.	8.0	202
47	Watermelon-like Rh x S y @C nanospheres: phase evolution and its influence on the electrocatalytic performance for oxygen reduction reaction. Journal of Materials Science, 2017, 52, 11402-11412.	3.7	5
48	Threeâ€Dimensional Porous Heterometallicâ€Organic Frameworks: Synthesis, Luminescent, Magnetic, Adsorption and Hydrogen Storage Properties. Chinese Journal of Chemistry, 2016, 34, 196-202.	4.9	10
49	High-efficiency hydrogen evolution reaction catalyzed by iron phosphide nanocrystals. RSC Advances, 2016, 6, 114430-114435.	3.6	16
50	Synthesis and properties of MFI zeolites with microporous, mesoporous and macroporous hierarchical structures by a gel-casting technique. New Journal of Chemistry, 2016, 40, 4398-4405.	2.8	25
51	Facile one pot synthesis of mesoporous organic–inorganic hybrid aluminosilicate spheres with ultra-high aluminium contents and their enhanced adsorption behavior for methylene blue. RSC Advances, 2016, 6, 49551-49555.	3.6	3
52	A novel and highly efficient earth-abundant Cu ₃ P with TiO ₂ "P–N― heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale, 2016, 8, 17516-17523.	5 . 6	110
53	Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure. CrystEngComm, 2016, 18, 6779-6783.	2.6	12
54	Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Scientific Reports, 2016, 6, 22268.	3.3	92

#	Article	IF	CITATIONS
55	One-dimensional periodic mesoporous organosilica helical nanotubes with amphiphilic properties for the removal of contaminants from water. Journal of Materials Chemistry A, 2016, 4, 4145-4154.	10.3	34
56	Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol. Catalysts, 2015, 5, 2134-2146.	3.5	13
57	Syntheses, characterizations, and catalytic activities of mesostructured aluminophosphates with tailorable acidity assembled with various preformed zeolite nanoclusters. Journal of Porous Materials, 2015, 22, 529-536.	2.6	0
58	Design and synthesis of high performance LiFePO ₄ /C nanomaterials for lithium ion batteries assisted by a facile H ⁺ /Li ⁺ ion exchange reaction. Journal of Materials Chemistry A, 2015, 3, 8062-8069.	10.3	24
59	A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO ₂ adsorption. Chemical Communications, 2015, 51, 12423-12426.	4.1	69
60	Fast synthesis of submicron aluminosilicate (low silica/alumina ratio) zeolites under solventless microwave radiation. RSC Advances, 2015, 5, 95463-95466.	3.6	8
61	Amphiphilic hollow porous shell encapsulated Au@Pd bimetal nanoparticles for aerobic oxidation of alcohols in water. Chemical Communications, 2015, 51, 14601-14604.	4.1	44
62	A novel, efficient and facile method for the template removal from mesoporous materials. Chemical Research in Chinese Universities, 2014, 30, 894-899.	2.6	8
63	N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Advances, 2014, 4, 21301-21305.	3.6	25
64	An organosilane-directed growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks. Journal of Materials Chemistry A, 2014, 2, 12403-12412.	10.3	75
65	Ternary solid nano organic/inorganic composite of lanthanum with acetic acid and curcumin/hydroxyapatite and its antibacterial activity. Chemical Research in Chinese Universities, 2014, 30, 352-355.	2.6	6
66	Hydrothermal synthesis of single-crystalline mesoporous beta zeolite assisted by N-methyl-2-pyrrolidone. RSC Advances, 2014, 4, 39297-39300.	3.6	7
67	Synthesis of Cu2(OH)PO4 Crystals with Various Morphologies and Their Catalytic Activity in Hydroxylation of Phenol. Chemistry Letters, 2013, 42, 772-774.	1.3	4
68	Magnetic mesoporous carbon for efficient removal of organic pollutants. Adsorption, 2012, 18, 439-444.	3.0	20
69	Direct Synthetic Processes for Cyclic Carbonates from Olefins and CO2. Catalysis Surveys From Asia, 2011, 15, 49-54.	2.6	30
70	Mesoporous MFI zeolites with self-stacked morphology templated by cationic polymer. Chemical Communications, 2010, 46, 7418.	4.1	30
71	In Situ Synthesis, Characterization of SiPMo-X, and Different Catalytic Properties of SiPMo-X and SiPW-X. European Journal of Inorganic Chemistry, 2006, 2006, 3054-3060.	2.0	26
72	Synthesis, Characterization, and Catalytic Properties of SiPW-X Mesoporous Silica with Heteropolyacid Encapsulated into Their Framework. European Journal of Inorganic Chemistry, 2005, 2005, 4801-4807.	2.0	43

Runwei Wang

#	Article	IF	CITATIONS
73	Synthesis of Higher Aluminum Content Hexagonal and Cubic Mesoporous Aluminosilicates toward Catalysts. Topics in Catalysis, 2005, 35, 25-34.	2.8	2
74	TemplateÂassisted selfÂassembly of macro–micro bifunctional porous materials. Journal of Materials Chemistry, 2001, 11, 1687-1693.	6.7	61
75	Title is missing!. Catalysis Letters, 2001, 76, 105-109.	2.6	24