
Haruo Saito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1384916/publications.pdf Version: 2024-02-01

Ηλριίο Κλιτο

#	Article	IF	CITATIONS
1	Osmostress enhances activating phosphorylation of Hog1 <scp>MAP</scp> kinase by monoâ€phosphorylated Pbs2 <scp>MAP</scp> 2K. EMBO Journal, 2020, 39, e103444.	3.5	44
2	Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. PLoS ONE, 2019, 14, e0211380.	1.1	18
3	TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nature Communications, 2016, 7, 10252.	5.8	114
4	Scaffold Protein Ahk1, Which Associates with Hkr1, Sho1, Ste11, and Pbs2, Inhibits Cross Talk Signaling from the Hkr1 Osmosensor to the Kss1 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 2016, 36, 1109-1123.	1.1	24
5	Binding of the Extracellular Eight-Cysteine Motif of Opy2 to the Putative Osmosensor Msb2 Is Essential for Activation of the Yeast High-Osmolarity Glycerol Pathway. Molecular and Cellular Biology, 2016, 36, 475-487.	1.1	22
6	MCRIP1, an ERK Substrate, Mediates ERK-Induced Gene Silencing during Epithelial-Mesenchymal Transition by Regulating the Co-Repressor CtBP. Molecular Cell, 2015, 58, 35-46.	4.5	63
7	Oscillation of p38 activity controls efficient pro-inflammatory gene expression. Nature Communications, 2015, 6, 8350.	5.8	64
8	Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1. Nature Communications, 2015, 6, 6975.	5.8	46
9	Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms. Science Signaling, 2014, 7, ra21.	1.6	92
10	SAPK pathways and p53 cooperatively regulate PLK4 activity and centrosome integrity under stress. Nature Communications, 2013, 4, 1775.	5.8	60
11	Response to Hyperosmotic Stress. Genetics, 2012, 192, 289-318.	1.2	427
12	The Temporal Pattern of Stimulation Determines the Extent and Duration of MAPK Activation in a <i>Caenorhabditis elegans</i> Sensory Neuron. Science Signaling, 2012, 5, ra76.	1.6	30
13	Oncogenic Ras abrogates MEK SUMOylation that suppresses the ERK pathway and cell transformation. Nature Cell Biology, 2011, 13, 282-291.	4.6	56
14	Regulation of cross-talk in yeast MAPK signaling pathways. Current Opinion in Microbiology, 2010, 13, 677-683.	2.3	185
15	Dynamic Control of Yeast MAP Kinase Network by Induced Association and Dissociation between the Ste50 Scaffold and the Opy2 Membrane Anchor. Molecular Cell, 2010, 40, 87-98.	4.5	80
16	Stimulus-Specific Distinctions in Spatial and Temporal Dynamics of Stress-Activated Protein Kinase Kinase Kinases Revealed by a Fluorescence Resonance Energy Transfer Biosensor. Molecular and Cellular Biology, 2009, 29, 6117-6127.	1.1	25
17	Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK. EMBO Journal, 2009, 28, 1380-1391.	3.5	73
18	Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nature Cell Biology, 2008, 10, 1324-1332.	4.6	482

HARUO SAITO

#	Article	IF	CITATIONS
19	Phosphorylated Ssk1 Prevents Unphosphorylated Ssk1 from Activating the Ssk2 Mitogen-Activated Protein Kinase Kinase Kinase in the Yeast High-Osmolarity Glycerol Osmoregulatory Pathway. Molecular and Cellular Biology, 2008, 28, 5172-5183.	1.1	56
20	Two Adjacent Docking Sites in the Yeast Hog1 Mitogen-Activated Protein (MAP) Kinase Differentially Interact with the Pbs2 MAP Kinase Kinase and the Ptp2 Protein Tyrosine Phosphatase. Molecular and Cellular Biology, 2008, 28, 2481-2494.	1.1	52
21	Activation of MTK1/MEKK4 by GADD45 through Induced N-C Dissociation and Dimerization-Mediated trans Autophosphorylation of the MTK1 Kinase Domain. Molecular and Cellular Biology, 2007, 27, 2765-2776.	1.1	103
22	Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO Journal, 2007, 26, 3521-3533.	3.5	204
23	Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO Journal, 2006, 25, 3033-3044.	3.5	148
24	Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. Journal of Experimental Medicine, 2005, 201, 441-452.	4.2	100
25	Conserved Docking Site Is Essential for Activation of Mammalian MAP Kinase Kinases by Specific MAP Kinase Kinase Kinases. Molecular Cell, 2005, 18, 295-306.	4.5	146
26	Regulation of the Osmoregulatory HOG MAPK Cascade in Yeast. Journal of Biochemistry, 2004, 136, 267-272.	0.9	200
27	A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO Journal, 2003, 22, 3624-3634.	3.5	91
28	Functions of the Ectodomain and Cytoplasmic Tyrosine Phosphatase Domains of Receptor Protein Tyrosine Phosphatase Dlar In Vivo. Molecular and Cellular Biology, 2003, 23, 6909-6921.	1.1	28
29	Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. Journal of Cell Biology, 2003, 161, 1035-1040.	2.3	208
30	The Sln1-Ypd1-Ssk1 Multistep Phosphorelay System That Regulates an Osmosensing MAP Kinase Cascade in Yeast. , 2003, , 397-419.		1
31	Regulation of MTK1/MEKK4 Kinase Activity by Its N-Terminal Autoinhibitory Domain and GADD45 Binding. Molecular and Cellular Biology, 2002, 22, 4544-4555.	1.1	140
32	Smad-dependent GADD45beta expression mediates delayed activation of p38 MAP kinase by TGF-beta. EMBO Journal, 2002, 21, 6473-6482.	3.5	162
33	Histidine Phosphorylation and Two-Component Signaling in Eukaryotic Cells. Chemical Reviews, 2001, 101, 2497-2510.	23.0	84
34	The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium. Current Biology, 2001, 11, 1317-1327.	1.8	119
35	Distinct Functions of the Two Protein Tyrosine Phosphatase Domains of LAR (Leukocyte Common) Tj ETQq1 1 (15, 271-280.	0.784314 rg 3.7	gBT /Overloc 39
36	Rck2 Kinase Is a Substrate for the Osmotic Stress-Activated Mitogen-Activated Protein Kinase Hog1. Molecular and Cellular Biology, 2000, 20, 3887-3895.	1.1	132

Haruo Saito

#	Article	IF	CITATIONS
37	Crystal Structure of the Tandem Phosphatase Domains of RPTP LAR. Cell, 1999, 97, 449-457.	13.5	164
38	Regulation of the human stress-responsive MAP kinase signaling pathways Seibutsu Butsuri Kagaku, 1999, 43, 49-55.	0.1	0
39	Signal transduction by MAP kinase cascades in budding yeast. Current Opinion in Microbiology, 1998, 1, 175-182.	2.3	154
40	A Family of Stress-Inducible GADD45-like Proteins Mediate Activation of the Stress-Responsive MTK1/MEKK4 MAPKKK. Cell, 1998, 95, 521-530.	13.5	712
41	The Laminin–Nidogen Complex is a Ligand for a Specific Splice Isoform of the Transmembrane Protein Tyrosine Phosphatase LAR. Journal of Cell Biology, 1998, 141, 1675-1684.	2.3	122
42	Requirement of STE50 for Osmostress-Induced Activation of the STE11 Mitogen-Activated Protein Kinase Kinase Kinase in the High-Osmolarity Glycerol Response Pathway. Molecular and Cellular Biology, 1998, 18, 5788-5796.	1.1	129
43	Osmotic Activation of the HOG MAPK Pathway via Ste11p MAPKKK: Scaffold Role of Pbs2p MAPKK. Science, 1997, 276, 1702-1705.	6.0	545
44	Yeast HOG1 MAP Kinase Cascade Is Regulated by a Multistep Phosphorelay Mechanism in the SLN1–YPD1–SSK1 "Two-Component―Osmosensor. Cell, 1996, 86, 865-875.	13.5	839
45	The Transmembrane Tyrosine Phosphatase DLAR Controls Motor Axon Guidance in Drosophila. Cell, 1996, 84, 611-622.	13.5	316
46	Molecular Characterization of the Human Transmembrane Protein-tyrosine Phosphatase δ. Journal of Biological Chemistry, 1995, 270, 6722-6728.	1.6	75
47	Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1995, 249, 127-138.	2.4	103
48	A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 1994, 369, 242-245.	13.7	1,095
49	Substrate specificities of catalytic fragments of protein tyrosine phosphatases (HPTP <i>β</i> , LAR, and) Tj ETQq1 Protein Science, 1993, 2, 977-984.	1 0.7843 3.1	14 rgBT /O 87
50	Structural diversity of eukaryotic protein tyrosine phosphatases: functional and evolutionary implications. Seminars in Cell Biology, 1993, 4, 379-387.	3.5	28
51	CD45 and a family of receptor-linked protein tyrosine phosphatases. Biochemical Society Transactions, 1992, 20, 165-169.	1.6	12
52	Catalytic domains of the LAR and CD45 protein tyrosine phosphatases from Escherichia coli expression systems: purification and characterization for specificity and mechanism. Biochemistry, 1992, 31, 133-138.	1.2	65
53	Activation of T cells through a T cell-specific epitope of CD45. Cellular Immunology, 1992, 145, 111-129.	1.4	17
54	Purification and characterization of a soluble catalytic fragment of the human transmembrane leukocyte antigen related (LAR) protein tyrosine phosphatase from an E. coli expression system. Biochemistry, 1991, 30, 6210-6216.	1.2	74

HARUO SAITO

#	Article	IF	CITATIONS
55	A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell, 1991, 67, 629-639.	13.5	375
56	Effect of activation of protein kinase C on CD45 isoform expression and CD45 protein tyrosine phosphatase activity in T cells. European Journal of Immunology, 1990, 20, 1655-1660.	1.6	41
57	Suppressors of temperature-sensitive mutations in a ribosomal protein gene, rpsL (S12), of Escherichia coli K12. Molecular Genetics and Genomics, 1985, 199, 381-387.	2.4	39
58	Limited diversity of the rearranged T-cell \hat{I}^3 gene. Nature, 1985, 313, 752-755.	13.7	188
59	Developmental regulation of T-cell receptor gene expression. Nature, 1985, 314, 103-107.	13.7	525
60	Unusual organization and diversity of T-cell receptor a-chain genes. Nature, 1985, 316, 828-832.	13.7	221
61	Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature, 1984, 307, 334-340.	13.7	272
62	Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature, 1984, 309, 757-762.	13.7	655
63	A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes. Nature, 1984, 312, 36-40.	13.7	511
64	Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell, 1981, 27, 533-542.	13.5	123
65	Organization and expression of the dnaJ and dnaK genes of Escherichia coli K12. Molecular Genetics and Genomics, 1978, 164, 1-8.	2.4	115
66	A transducing λ phage carrying grpE, a bacterial gene necessary for λ DNA replication, and two ribosomal protein genes, rpsP (S16) and rplS (L19). Molecular Genetics and Genomics, 1978, 165, 247-256.	2.4	34
67	Initiation of the DNA replication of bacteriophage lambda in Escherichia coli K12. Journal of Molecular Biology, 1977, 113, 1-25.	2.0	194