
Marco Giovanni MalusÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1384646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research, 2016, 31, 1-19.	3.0	153
2	Bias in detrital zircon geochronology and thermochronometry. Chemical Geology, 2013, 359, 90-107.	1.4	114
3	Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth and Planetary Science Letters, 2011, 310, 21-32.	1.8	103
4	First seismic evidence for continental subduction beneath the Western Alps. Geology, 2015, 43, 815-818.	2.0	103
5	Contrasting styles of (U)HP rock exhumation along the Cenozoic Adriaâ€Europe plate boundary (Western Alps, Calabria, Corsica). Geochemistry, Geophysics, Geosystems, 2015, 16, 1786-1824.	1.0	102
6	The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth. Earth and Planetary Science Letters, 2008, 268, 487-500.	1.8	99
7	Continuity of the Alpine slab unraveled by highâ€resolution <i>P</i> wave tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 8720-8737.	1.4	95
8	Miocene to Present differential exhumation in the Western Alps: Insights from fission track thermochronology. Tectonics, 2005, 24, n/a-n/a.	1.3	90
9	Giant non-catastrophic landslides and the long-term exhumation of the European Alps. Earth and Planetary Science Letters, 2013, 365, 263-274.	1.8	89
10	Slab breakoff: A critical appraisal of a geological theory as applied in space and time. Earth-Science Reviews, 2018, 177, 303-319.	4.0	79
11	Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology, 2012, 280, 149-164.	1.0	78
12	Postâ€Variscan tectonics in eastern Antiâ€Atlas (Morocco). Terra Nova, 2007, 19, 481-489.	0.9	69
13	Detrital geochronology of unroofing magmatic complexes and the slow erosion of Oligocene volcanoes in the Alps. Earth and Planetary Science Letters, 2011, 301, 324-336.	1.8	61
14	Detrital Fingerprints of Fossil Continental-Subduction Zones (Axial Belt Provenance, European Alps). Journal of Geology, 2010, 118, 341-362.	0.7	45
15	The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ 10 Be, 26 Al and 21 Ne in sediment of the Po river catchment. Earth and Planetary Science Letters, 2016, 452, 258-271.	1.8	45
16	Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica–Sardinia by low-temperature thermochronometry. Gondwana Research, 2016, 31, 135-149.	3.0	45
17	Strain partitioning in the axial NW Alps since the Oligocene. Tectonics, 2009, 28, .	1.3	43
18	Tracking Adria indentation beneath the Alps by detrital zircon U-Pb geochronology: Implications for the Oligocene–Miocene dynamics of the Adriatic microplate. Geology, 2016, 44, 155-158.	2.0	40

Marco Giovanni MalusÃ

21

#	Article	IF	CITATIONS
19	Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps). Lithos, 2018, 296-299, 623-636.	0.6	36
20	Divergent plate motion drives rapid exhumation of (ultra)high pressure rocks. Earth and Planetary Science Letters, 2018, 491, 67-80.	1.8	35
21	The Deep Structure of the Alps Based on the CIFALPS Seismic Experiment: A Synthesis. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009466.	1.0	35
22	The geologic interpretation of the detrital thermochronology record within a stratigraphic framework, with examples from the European Alps, Taiwan and the Himalayas. Earth-Science Reviews, 2020, 201, 103074.	4.0	33
23	MinSORTING: An Excel® worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies. Computers and Geosciences, 2013, 59, 90-97.	2.0	32
24	Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography. Tectonophysics, 2018, 731-732, 35-47.	0.9	32
25	Evidence for a serpentinized plate interface favouring continental subduction. Nature Communications, 2020, 11, 2171.	5.8	32
26	Polyphase thrusting and dyke emplacement in the central Southern Alps (Northern Italy). International Journal of Earth Sciences, 2011, 100, 1095-1113.	0.9	31
27	Burial and exhumation across the Alps–Apennines junction zone constrained by fissionâ€ŧrack analysis on modern river sands. Terra Nova, 2012, 24, 221-226.	0.9	31
28	Interplay between erosion and tectonics in the Western Alps. Terra Nova, 2006, 18, 104-108.	0.9	29
29	Synchronous Periadriatic magmatism in the Western and Central Alps in the absence of slab breakoff. Terra Nova, 2019, 31, 120-128.	0.9	29
30	The Grand St Bernardâ€Briançonnais Nappe System and the Paleozoic Inheritance of the Western Alps Unraveled by Zircon Uâ€Pb Dating. Tectonics, 2017, 36, 2950-2972.	1.3	28
31	Transpressional structuring of the High Atlas belt, Morocco. Journal of Structural Geology, 2020, 135, 104021.	1.0	28
32	Earthquakes in the western Alpine mantle wedge. Gondwana Research, 2017, 44, 89-95.	3.0	25
33	Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos, 2017, 290-291, 48-59.	0.6	24
34	Tracking coarse-grained gravity flows by LASS-ICP-MS depth-profiling of detrital zircon (Aveto) Tj ETQq0 0 0 rgBT	Qverlock	2 10 Tf 50 142
35	From Cooling to Exhumation: Setting the Reference Frame for the Interpretation of Thermochronologic Data. Springer Textbooks in Earth Sciences, Geography and Environment, 2019, , 147-164.	0.1	22
			·

Late stages of exhumation constrained by structural, fluid inclusion and fission track analyses
(Sesia–Lanzo unit, Western European Alps). Earth and Planetary Science Letters, 2006, 243, 565-580.

#	Article	IF	CITATIONS
37	Transpressional tectonics and nappe stacking along the Southern Variscan Front of Morocco. International Journal of Earth Sciences, 2010, 99, 1111-1122.	0.9	21
38	Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends. Scientific Reports, 2018, 8, 4740.	1.6	21
39	3-D Pn tomography reveals continental subduction at the boundaries of the Adriatic microplate in the absence of a precursor oceanic slab. Earth and Planetary Science Letters, 2019, 510, 131-141.	1.8	21
40	Zircon as a provenance tracer: Coupling Raman spectroscopy and U Pb geochronology in source-to-sink studies. Chemical Geology, 2020, 555, 119828.	1.4	21
41	Application of Thermochronology to Geologic Problems: Bedrock and Detrital Approaches. Springer Textbooks in Earth Sciences, Geography and Environment, 2019, , 191-209.	0.1	17
42	Focused erosion in the Alps constrained by fission-track ages on detrital apatites. Geological Society Special Publication, 2009, 324, 141-152.	0.8	16
43	Actualistic snapshot of the early Oligocene Alps: the Alps–Apennines knot disentangled. Terra Nova, 2012, 24, 1-6.	0.9	15
44	A seismotectonic picture of the inner southern Western Alps based on the analysis of anomalously deep earthquakes. Tectonophysics, 2015, 661, 190-199.	0.9	15
45	Supradetachment basin evolution unravelled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Research, 2018, 30, 502-521.	1.3	15
46	The Gediz Supradetachment System (SW Turkey): Magmatism, Tectonics, and Sedimentation During Crustal Extension. Tectonics, 2019, 38, 1414-1440.	1.3	15
47	Seismotectonics at the Transition Between Oppositeâ€Đipping Slabs (Western Alpine Region). Tectonics, 2020, 39, e2020TC006086.	1.3	15
48	Precollisional development and Cenozoic evolution of the Southalpine retrobelt (European Alps). Lithosphere, 2015, , L466.1.	0.6	14
49	3D modeling of crustal shortening influenced by along-strike lithological changes: Implications for continental collision in the Western and Central Alps. Tectonophysics, 2018, 746, 425-438.	0.9	14
50	Sediment budgets by detrital apatite fission-track dating (Rivers Dora Baltea and Arc, Western Alps). , 2012, , .		12
51	The Sedimentology of Detrital Thermochronology. Springer Textbooks in Earth Sciences, Geography and Environment, 2019, , 123-143.	0.1	11
52	Ongoing exhumation of the Taiwan orogenic wedge revealed by detrital apatite thermochronology: The impact of effective mineral fertility and zero-track grains. Earth and Planetary Science Letters, 2020, 544, 116374.	1.8	9
53	Seismic probing of continental subduction zones. Journal of Asian Earth Sciences, 2017, 145, 37-45.	1.0	8
54	A Guide for Interpreting Complex Detrital Age Patterns in Stratigraphic Sequences. Springer Textbooks in Earth Sciences, Geography and Environment, 2019, , 279-293.	0.1	8

#	Article	IF	CITATIONS
55	Crustal Exhumation of Plutonic and Metamorphic Rocks: Constraints from Fission-Track Thermochronology. Springer Textbooks in Earth Sciences, Geography and Environment, 2019, , 235-257.	0.1	8
56	Syntectonic Sediment Recycling Controls Eolian Deposition in Eastern Asia Since â^1⁄48ÂMa. Geophysical Research Letters, 2022, 49, .	1.5	8
57	Pulsed Mesozoic exhumation in Northeast Asia: New constraints from zircon U-Pb and apatite U-Pb, fission track and (U-Th)/He analyses in the Zhangguangcai Range, NE China. Tectonophysics, 2021, 818, 229075.	0.9	7
58	Receiver function mapping of the mantle transition zone beneath the Western Alps: New constraints on slab subduction and mantle upwelling. Earth and Planetary Science Letters, 2022, 577, 117267.	1.8	6
59	Detrital Thermochronology Using Conglomerates and Cobbles. Springer Textbooks in Earth Sciences, Geography and Environment, 2019, , 295-314.	0.1	4
60	An explosive component in a December 2020 Milan earthquake suggests outgassing of deeply recycled carbon. Communications Earth & Environment, 2022, 3, .	2.6	4
61	(Mis)Identification of magmatic and exhumation ages by detrital zircon U Pb and He double dating: A case study from the Bergell-Gonfolite system (European Alps). Chemical Geology, 2022, 606, 120970.	1.4	4
62	Reply to Comment on Resentini et al., 2020: "Ongoing exhumation of the Taiwan orogenic wedge revealed by detrital apatite thermochronology: The impact of effective mineral fertility and zero-track grains― Earth and Planetary Science Letters, 2020, 550, 116557.	1.8	0