Reza Jafari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1384404/publications.pdf Version: 2024-02-01

REZA LAEADI

#	Article	IF	CITATIONS
1	Development of a dual capsule selfâ€healing silicone composite using silicone chemistry and poly(melamineâ€ureaâ€formaldehyde) shells. Journal of Applied Polymer Science, 2022, 139, 51670.	2.6	2
2	On the icephobicity of damage-tolerant superhydrophobic bulk nanocomposites. Soft Matter, 2022, 18, 412-424.	2.7	5
3	Design strategies for antiviral coatings and surfaces: A review. Applied Surface Science Advances, 2022, 8, 100224.	6.8	17
4	One-step fabrication of superhydrophobic nanocomposite with superior anticorrosion performance. Progress in Organic Coatings, 2022, 169, 106918.	3.9	6
5	Performance of a nanotextured superhydrophobic coating developed for high-voltage outdoor porcelain insulators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129461.	4.7	16
6	Fabrication of liquid-infused textured surfaces (UTS): The effect of surface textures on anti-icing properties and durability. Materials Today Communications, 2022, 32, 103935.	1.9	4
7	Temperature-dependent droplet impact dynamics of a water droplet on hydrophobic and superhydrophobic surfaces: An experimental and predictive machine learning–based study. International Journal of Heat and Mass Transfer, 2022, 195, 123190.	4.8	8
8	A non-fluorinated mechanochemically robust volumetric superhydrophobic nanocomposite. Journal of Materials Science and Technology, 2021, 66, 213-225.	10.7	15
9	Icephobicity and durability assessment of superhydrophobic surfaces: The role of surface roughness and the ice adhesion measurement technique. Journal of Materials Processing Technology, 2021, 288, 116883.	6.3	56
10	Integration of experimental analysis and machine learning to predict drop behavior on superhydrophobic surfaces. Chemical Engineering Journal, 2021, 417, 127898.	12.7	16
11	Recent progress in the anti-icing performance of slippery liquid-infused surfaces. Progress in Organic Coatings, 2021, 151, 106096.	3.9	43
12	Off–on sensor based on concentration-dependent multicolor fluorescent carbon dots for detecting pesticides. Nano Structures Nano Objects, 2021, 26, 100706.	3.5	27
13	A review of plasma-based superhydrophobic textiles: theoretical definitions, fabrication, and recent developments. Journal of Coatings Technology Research, 2021, 18, 1635-1658.	2.5	13
14	Potential use of smart coatings for icephobic applications: A review. Surface and Coatings Technology, 2021, 424, 127656.	4.8	30
15	A comparative study of the icephobic and self-cleaning properties of Teflon materials having different surface morphologies. Journal of Materials Processing Technology, 2020, 276, 116415.	6.3	42
16	Evaluating the effect of processing parameters on the replication quality in the micro compression molding of silicone rubber. Materials and Manufacturing Processes, 2020, 35, 1567-1575.	4.7	9
17	Potential anti-icing applications of encapsulated phase change material–embedded coatings; a review. Journal of Energy Storage, 2020, 31, 101638.	8.1	24
18	Advances in the Fabrication of Superhydrophobic Polymeric Surfaces by Polymer Molding Processes. Industrial & Engineering Chemistry Research, 2020, 59, 9343-9363.	3.7	49

Reza Jafari

#	Article	IF	CITATIONS
19	Fabrication of icephobic aluminium surfaces by atmospheric plasma jet polymerisation. Surface Engineering, 2019, 35, 450-455.	2.2	23
20	Evaluation of atmospheric-pressure plasma parameters to achieve superhydrophobic and self-cleaning HTV silicone rubber surfaces via a single-step, eco-friendly approach. Surface and Coatings Technology, 2019, 375, 100-111.	4.8	38
21	Rigorous testing to assess the self-cleaning properties of an ultra-water-repellent silicone rubber surface. Surface and Coatings Technology, 2019, 374, 557-568.	4.8	24
22	Recent progress and challenges with 3D printing of patterned hydrophobic and superhydrophobic surfaces. International Journal of Advanced Manufacturing Technology, 2019, 103, 1225-1238.	3.0	64
23	Robust icephobic, and anticorrosive plasma polymer coating. Cold Regions Science and Technology, 2018, 151, 89-93.	3.5	35
24	Application of superhydrophobic coatings as a corrosion barrier: A review. Surface and Coatings Technology, 2018, 341, 40-56.	4.8	413
25	Wetting and Self-Cleaning Properties of Silicone Rubber Surfaces Treated by Atmospheric Plasma Jet. , 2018, , .		3
26	Micro-Nanostructured Silicone Rubber Surfaces Using Compression Molding. Materials Science Forum, 2018, 941, 1802-1807.	0.3	5
27	Micro-Nanostructured Silicone Surfaces for Highvoltage Application. , 2018, , .		2
28	Simple Fabrication of Superhydrophobic Surfaces Using Atmospheric-Pressure Plasma. Materials Science Forum, 2018, 941, 1808-1814.	0.3	6
29	Superhydrophobic and Highly Oleophilic Polystyrene Fibers (PS) with Delayed Freezing Time and Effective Oil Adsorption. Materials Science Forum, 2018, 941, 2232-2236.	0.3	0
30	Direct replication of micro-nanostructures in the fabrication of superhydrophobic silicone rubber surfaces by compression molding. Applied Surface Science, 2018, 458, 619-628.	6.1	72
31	Micro-nanostructured polymer surfaces using injection molding: A review. Materials Today Communications, 2017, 13, 126-143.	1.9	119
32	Effect of HMDSO flow rate in nitrogen atmospheric plasma on the superhydrophobic characteristics of organosilicon-based coatings. , 2016, , .		0
33	Hydrophobic and ice-phobic properties of self-assembled monolayers (SAMs) coatings on AA6061. Progress in Organic Coatings, 2016, 93, 41-45.	3.9	21
34	Durability enhancement of icephobic fluoropolymer film. Journal of Coatings Technology Research, 2016, 13, 405-412.	2.5	37
35	Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness. Applied Surface Science, 2015, 349, 211-218.	6.1	108
36	Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering. Applied Catalysis B: Environmental, 2014, 144, 12-21.	20.2	59

Reza Jafari

#	Article	IF	CITATIONS
37	An optimization of superhydrophobic polyvinylidene fluoride/zinc oxide materials using Taguchi method. Applied Surface Science, 2014, 288, 229-237.	6.1	38
38	Development a simple method to create the superhydrophobic composite coatings. Journal of Composite Materials, 2013, 47, 3125-3129.	2.4	18
39	Applications of Plasma Technology in Development of Superhydrophobic Surfaces. Plasma Chemistry and Plasma Processing, 2013, 33, 177-200.	2.4	125
40	The ice repellency of plasma polymerized hexamethyldisiloxane coating. Applied Surface Science, 2013, 284, 459-463.	6.1	52
41	Development of silver nanoparticle loaded antibacterial polymer mesh using plasma polymerization process. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1121-1132.	4.0	79
42	Water-Repellency Enhancement of Nanostructured Plasma-Polymerized HMDSO Coatings Using Grey-Based Taguchi Method. Nanoscience and Nanotechnology Letters, 2013, 4, 369-374.	0.4	13
43	Fabrication of superhydrophobic nanostructured surface onÂaluminum alloy. Applied Physics A: Materials Science and Processing, 2011, 102, 195-199.	2.3	95
44	Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface. Applied Surface Science, 2011, 257, 6489-6493.	6.1	74
45	Improvement of the stability of plasma polymerized acrylic acid coating deposited on PS beads in a fluidized bed reactor. Reactive and Functional Polymers, 2011, 71, 520-524.	4.1	18
46	Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Applied Surface Science, 2010, 257, 1540-1543.	6.1	187
47	Development of oligonucleotide microarray involving plasma polymerized acrylic acid. Thin Solid Films, 2009, 517, 5763-5768.	1.8	23
48	Stable plasma polymerized acrylic acid coating deposited on polyethylene (PE) films in a low frequency discharge (70kHz). Reactive and Functional Polymers, 2006, 66, 1757-1765.	4.1	76
49	Superhydrophobic Surface Elaboration Using Plasma Polymerization of Hexamethyldisiloxane (HMDSO). Advanced Materials Research, 0, 409, 783-787.	0.3	15
50	A Simple Method to Create Superhydrophobic Aluminium Surfaces. Materials Science Forum, 0, 706-709, 2874-2879.	0.3	17