List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1383862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi mediumâ€entropy alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2022, 73, 106-115.	1.5	8
2	A new αÂ+Âβ Ti-alloy with refined microstructures and enhanced mechanical properties in the as-cast state. Scripta Materialia, 2022, 207, 114260.	5.2	31
3	Nanostructured steels for advanced structural applications. Materials Futures, 2022, 1, 013501.	8.4	3
4	Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates. Acta Materialia, 2022, 223, 117480.	7.9	72
5	Design of titanium alloys by additive manufacturing: A critical review. , 2022, 1, 100014.		50
6	Synergy of strengthening and toughening of a Cu-rich precipitate-strengthened steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142487.	5.6	14
7	Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. International Journal of Plasticity, 2022, 153, 103235.	8.8	56
8	A highly distorted ultraelastic chemically complex Elinvar alloy. Nature, 2022, 602, 251-257.	27.8	75
9	Chemically complex intermetallic alloys: A new frontier for innovative structural materials. Materials Today, 2022, 52, 161-174.	14.2	29
10	L12-strengthened multicomponent Co-Al-Nb-based alloys with high strength and matrix-confined stacking-fault-mediated plasticity. Acta Materialia, 2022, 229, 117763.	7.9	36
11	Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: The role of heterogeneous strain distribution and environmentally assisted intergranular damage. Materials Today Physics, 2022, 24, 100653.	6.0	12
12	A lightweight refractory complex concentrated alloy with high strength and uniform ductility. Applied Materials Today, 2022, 27, 101429.	4.3	7
13	High-entropy induced a glass-to-glass transition in a metallic glass. Nature Communications, 2022, 13, 2183.	12.8	34
14	In situ study on medium-range order evolution during the polyamorphous phase transition in a Pd-Ni-P nanostructured glass. Journal of Materials Science and Technology, 2022, 125, 145-156.	10.7	9
15	Dual heterogeneous structure facilitating an excellent strength-ductility combination in an additively manufactured multi-principal-element alloy. Materials Research Letters, 2022, 10, 575-584.	8.7	23
16	A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility. Acta Materialia, 2022, 232, 117975.	7.9	69
17	Temperature-dependent microstructural evolutions and deformation mechanisms of (Ni2Co2FeCr)92Al4Nb4 high-entropy alloys. Journal of Alloys and Compounds, 2022, 918, 165597.	5.5	10
18	Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	27

#	Article	IF	CITATIONS
19	Metal-carbide eutectics with multiprincipal elements make superrefractory alloys. Science Advances, 2022, 8, .	10.3	17
20	Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging. Journal of Materials Science and Technology, 2021, 69, 156-167.	10.7	48
21	Heterogenous columnar-grained high-entropy alloys produce exceptional resistance to intermediate-temperature intergranular embrittlement. Scripta Materialia, 2021, 194, 113622.	5.2	25
22	Effect of annealing temperatures on microstructure and deformation behavior of AlO·1CrFeCoNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140523.	5.6	29
23	Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Materials Horizons, 2021, 8, 948-955.	12.2	52
24	Self-Assembled Hydrophobic/Hydrophilic Porphyrin-Ti ₃ C ₂ T <i>_x</i> MXene Janus Membrane for Dual-Functional Enabled Photothermal Desalination. ACS Applied Materials & Interfaces, 2021, 13, 3762-3770.	8.0	82
25	Stacking Fault Driven Phase Transformation in CrCoNi Medium Entropy Alloy. Nano Letters, 2021, 21, 1419-1426.	9.1	47
26	Low-carbon advanced nanostructured steels: Microstructure, mechanical properties, and applications. Science China Materials, 2021, 64, 1580-1597.	6.3	8
27	Fatigue studies of CoCrFeMnNi high entropy alloy films using nanoindentation dynamic mechanical analyses. Surface and Coatings Technology, 2021, 410, 126927.	4.8	10
28	Hardened core of bilayer shear bands in a Zr-based metallic glass. Materials Letters, 2021, 286, 129242.	2.6	2
29	Nano-heterogeneity-stabilized and magnetic-interaction-modulated metallic glasses. Science China Materials, 2021, 64, 1813-1819.	6.3	12
30	Fast mobility induced self-lubrication at metallic glass surface. Journal of Applied Physics, 2021, 129, .	2.5	2
31	A medium-range structure motif linking amorphous and crystalline states. Nature Materials, 2021, 20, 1347-1352.	27.5	92
32	Highly pressurized helium nanobubbles promote stacking-fault-mediated deformation in FeNiCoCr high-entropy alloy. Acta Materialia, 2021, 210, 116843.	7.9	25
33	Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures. Applied Materials Today, 2021, 23, 101037.	4.3	11
34	A novel L12-strengthened multicomponent Co-rich high-entropy alloy with both high γâ€2-solvus temperature and superior high-temperature strength. Scripta Materialia, 2021, 199, 113826.	5.2	53
35	Nanotwinned CoCrFeMnNi high entropy alloy films for flexible electronic device applications. Vacuum, 2021, 189, 110249.	3.5	9
36	Rational design of chemically complex metallic glasses by hybrid modeling guided machine learning. Npj Computational Materials, 2021, 7, .	8.7	17

#	Article	IF	CITATIONS
37	Interstitially strengthened metastable FeCoCr-based medium-entropy alloys with both high strength and large ductility. Applied Physics Letters, 2021, 119, 051902.	3.3	4
38	Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys. Acta Materialia, 2021, 216, 117140.	7.9	52
39	Second phase effect on corrosion of nanostructured Mg-Zn-Ca dual-phase metallic glasses. Journal of Magnesium and Alloys, 2021, 9, 1546-1555.	11.9	15
40	Anomalous X-Ray Scattering and Extended X-Ray Absorption Fine Structure Study of the Local Structure of CrFeCoNiMox (x = 0.11, 0.18, and 0.23) High-Entropy Alloys. Jom, 2021, 73, 3285.	1.9	1
41	L1 ₂ â€Strengthened Coâ€Rich Alloys for Highâ€Temperature Structural Applications: A Critical Review. Advanced Engineering Materials, 2021, 23, 2100453.	3.5	11
42	Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries. Scripta Materialia, 2021, 204, 114066.	5.2	23
43	In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science, 2021, 374, 478-482.	12.6	168
44	Nanoprecipitate‣trengthened Highâ€Entropy Alloys. Advanced Science, 2021, 8, e2100870.	11.2	97
45	Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods. Acta Materialia, 2020, 186, 425-433.	7.9	57
46	Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy films. Journal of Alloys and Compounds, 2020, 820, 153388.	5.5	52
47	Effect of external applied magnetic field on microstructures and mechanical properties of laser welding joint of medium-Mn nanostructured steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139787.	5.6	23
48	Extremely high dislocation density and deformation pathway of CrMnFeCoNi high entropy alloy at ultralow temperature. Scripta Materialia, 2020, 188, 21-25.	5.2	62
49	Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures. Nature Communications, 2020, 11, 6240.	12.8	226
50	Refractory alloying additions on the thermal stability and mechanical properties of high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140020.	5.6	45
51	Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science, 2020, 369, 427-432.	12.6	187
52	Quasi-work-hardening at sites of shear band interactions in a Cu50Zr50 metallic glass. Materials Letters, 2020, 281, 128655.	2.6	3
53	A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures. Materials Research Letters, 2020, 8, 373-382.	8.7	34
54	Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nature Communications, 2020, 11, 2390.	12.8	244

#	Article	IF	CITATIONS
55	Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia, 2020, 187, 250-255.	5.2	59
56	Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions. Scripta Materialia, 2020, 186, 213-218.	5.2	19
57	High hardness and fatigue resistance of CoCrFeMnNi high entropy alloy films with ultrahigh-density nanotwins. International Journal of Plasticity, 2020, 131, 102726.	8.8	80
58	Towards superior mechanical properties of hetero-structured high-entropy alloys via engineering multicomponent intermetallic nanoparticles. Scripta Materialia, 2020, 183, 39-44.	5.2	47
59	Cooperative deformation in high-entropy alloys at ultralow temperatures. Science Advances, 2020, 6, eaax4002.	10.3	157
60	Precipitation kinetics and mechanical properties of nanostructured steels with Mo additions. Materials Research Letters, 2020, 8, 187-194.	8.7	20
61	Growth, microstructure and mechanical properties of CoCrFeMnNi high entropy alloy films. Vacuum, 2020, 179, 109553.	3.5	27
62	Non-conventional transformation pathways and ultrafine lamellar structures in Î ³ -TiAl alloys. Acta Materialia, 2020, 189, 25-34.	7.9	34
63	How does the structural inhomogeneity influence the shear band behaviours of metallic glasses. Philosophical Magazine, 2020, 100, 1663-1681.	1.6	3
64	Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys. Acta Materialia, 2020, 189, 47-59.	7.9	137
65	Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy. Acta Materialia, 2020, 188, 517-527.	7.9	144
66	Unveiling the Electronic Origin for Pressure-Induced Phase Transitions in High-Entropy Alloys. Matter, 2020, 2, 751-763.	10.0	14
67	A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2020, 32, e2000385.	21.0	169
68	Martensitic transformation and mechanical behavior of a medium-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139371.	5.6	18
69	Water Splitting: A Novel Multinary Intermetallic as an Active Electrocatalyst for Hydrogen Evolution (Adv. Mater. 21/2020). Advanced Materials, 2020, 32, 2070166.	21.0	6
70	Precipitation-hardened high-entropy alloys for high-temperature applications: A critical review. MRS Bulletin, 2019, 44, 854-859.	3.5	42
71	Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nature Communications, 2019, 10, 5099.	12.8	97
72	Engineering medium-range order and polyamorphism in a nanostructured amorphous alloy. Communications Physics, 2019, 2, .	5.3	24

#	Article	IF	CITATIONS
73	Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy. Scripta Materialia, 2019, 164, 30-35.	5.2	170
74	Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy. Materials Research Letters, 2019, 7, 152-158.	8.7	56
75	Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Materialia, 2019, 167, 275-286.	7.9	172
76	Relating structural heterogeneity to \hat{l}^2 relaxation processes in metallic glasses. Materials Research Letters, 2019, 7, 305-311.	8.7	49
77	Hardening mechanisms and impact toughening of a high-strength steel containing low Ni and Cu additions. Acta Materialia, 2019, 172, 150-160.	7.9	64
78	The incredible excess entropy in high entropy alloys. Scripta Materialia, 2019, 168, 19-22.	5.2	22
79	Quantitative determination of the lattice constant in high entropy alloys. Scripta Materialia, 2019, 162, 468-471.	5.2	40
80	Design of highly thermal-shock resistant tungsten alloys with nanoscaled intra- and inter-type K bubbles. Journal of Alloys and Compounds, 2019, 782, 149-159.	5.5	28
81	Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Materialia, 2019, 165, 444-458.	7.9	336
82	Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Materialia, 2019, 165, 228-240.	7.9	373
83	Phase field study of the copper precipitation in Fe-Cu alloy. Acta Materialia, 2019, 166, 560-571.	7.9	39
84	Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel. International Journal of Plasticity, 2019, 113, 99-110.	8.8	94
85	Local structural mechanism for frozen-in dynamics in metallic glasses. Physical Review B, 2018, 97, .	3.2	6
86	Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scripta Materialia, 2018, 148, 42-46.	5.2	54
87	Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scripta Materialia, 2018, 148, 51-55.	5.2	154
88	Precipitation hardening in CoCrFeNi-based high entropy alloys. Materials Chemistry and Physics, 2018, 210, 2-11.	4.0	137
89	High B s Fe-based nanocrystalline alloy with high impurity tolerance. Journal of Materials Science, 2018, 53, 1437-1446.	3.7	49
90	Highâ€Entropy Alloy (HEA)â€Coated Nanolattice Structures and Their Mechanical Properties. Advanced Engineering Materials, 2018, 20, 1700625.	3.5	56

#	Article	IF	CITATIONS
91	Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018, 362, 933-937.	12.6	950
92	Effect of concentration on the structure of isothermally-annealed CuZr metallic glasses. Materials Science and Technology, 2018, 34, 2287-2293.	1.6	5
93	Strengthening mechanism in a high-strength carbon-containing powder metallurgical high entropy alloy. Intermetallics, 2018, 102, 58-64.	3.9	37
94	Ductilizing brittle high-entropy alloys via tailoring valence electron concentrations of precipitates by controlled elemental partitioning. Materials Research Letters, 2018, 6, 600-606.	8.7	41
95	Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy. Scripta Materialia, 2018, 155, 134-138.	5.2	41
96	Asynchronous responses of mechanical and magnetic properties to structure relaxation for FeNbB bulk metallic glass. Journal of Iron and Steel Research International, 2018, 25, 637-643.	2.8	4
97	Solid solubility, precipitates, and stacking fault energy of micro-alloyed CoCrFeNi high entropy alloys. Journal of Alloys and Compounds, 2018, 769, 490-502.	5.5	46
98	A Review on Nano-Scale Precipitation in Steels. Technologies, 2018, 6, 36.	5.1	48
99	Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography. Acta Materialia, 2018, 155, 69-79.	7.9	35
100	Nanoscale Structural Evolution and Anomalous Mechanical Response of Nanoglasses by Cryogenic Thermal Cycling. Nano Letters, 2018, 18, 4188-4194.	9.1	20
101	Deformation of CoCrFeNi high entropy alloy at large strain. Scripta Materialia, 2018, 155, 54-57.	5.2	64
102	Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scripta Materialia, 2017, 131, 42-46.	5.2	81
103	Mutual interaction of shear bands in metallic glasses. Intermetallics, 2017, 85, 48-53.	3.9	23
104	The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys. Scripta Materialia, 2017, 130, 96-99.	5.2	223
105	<i>In-situ</i> atomic force microscopy observation revealing gel-like plasticity on a metallic glass surface. Journal of Applied Physics, 2017, 121, .	2.5	13
106	Atom-probe study of Cu and NiAl nanoscale precipitation and interfacial segregation in a nanoparticle-strengthened steel. Materials Research Letters, 2017, 5, 562-568.	8.7	29
107	Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Materialia, 2017, 138, 72-82.	7.9	553
108	Compositional and microstructural optimization and mechanical-property enhancement of cast Ti alloys based on Ti-6Al-4V alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 91-101.	5.6	14

#	Article	IF	CITATIONS
109	Development of soft magnetic amorphous alloys with distinctly high Fe content. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	17
110	Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses. Physical Review B, 2017, 95, .	3.2	14
111	Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scripta Materialia, 2017, 126, 15-19.	5.2	212
112	Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era. Materials Today, 2017, 20, 142-154.	14.2	159
113	A ductile high entropy alloy with attractive magnetic properties. Journal of Alloys and Compounds, 2017, 694, 55-60.	5.5	183
114	Thermodynamics of vacancies and clusters in high-entropy alloys. Physical Review Materials, 2017, 1, .	2.4	28
115	Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Materialia, 2016, 116, 332-342.	7.9	670
116	The kinetic origin of delayed yielding in metallic glasses. Applied Physics Letters, 2016, 108, 251901.	3.3	8
117	Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating. Scientific Reports, 2016, 6, 27852.	3.3	11
118	Kinetic ways of tailoring phases in high entropy alloys. Scientific Reports, 2016, 6, 34628.	3.3	29
119	The Critical Criterion on Runaway Shear Banding in Metallic Glasses. Scientific Reports, 2016, 6, 21388.	3.3	18
120	Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels. Acta Materialia, 2016, 110, 31-43.	7.9	57
121	Effects of welding and post-weld heat treatments on nanoscale precipitation and mechanical properties of an ultra-high strength steel hardened by NiAl and Cu nanoparticles. Acta Materialia, 2016, 120, 216-227.	7.9	36
122	Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses. Acta Materialia, 2016, 121, 266-276.	7.9	41
123	The general effect of atomic size misfit on glass formation in conventional and high-entropy alloys. Intermetallics, 2016, 78, 30-41.	3.9	22
124	Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Physical Review B, 2016, 93, .	3.2	39
125	Shear-banding Induced Indentation Size Effect in Metallic Glasses. Scientific Reports, 2016, 6, 28523.	3.3	15
126	Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass. Scientific Reports, 2016, 6, 29357.	3.3	21

#	Article	IF	CITATIONS
127	Fabrication of a graded pore-sized porous FeAl intermetallic membrane. Powder Metallurgy, 2016, 59, 308-313.	1.7	4
128	Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths. Scientific Reports, 2016, 6, 21364.	3.3	44
129	Polysynthetic twinned TiAl single crystals for high-temperature applications. Nature Materials, 2016, 15, 876-881.	27.5	476
130	Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate. Journal of Alloys and Compounds, 2016, 667, 53-57.	5.5	106
131	Rate Dependence of Serrated Flow and Its Effect on Shear Stability of Bulk Metallic Glasses. Journal of Iron and Steel Research International, 2016, 23, 24-30.	2.8	11
132	Atomistic mechanism of nano-scale phase separation in fcc-based high entropy alloys. Journal of Alloys and Compounds, 2016, 663, 340-344.	5.5	16
133	Critical Shear Offset of Fracture in a Zr-based Metallic Glass. Journal of Iron and Steel Research International, 2016, 23, 53-56.	2.8	6
134	High-entropy alloy: challenges and prospects. Materials Today, 2016, 19, 349-362.	14.2	1,698
135	Atomistic mechanism of elastic softening in metallic glass under cyclic loading revealed by molecular dynamics simulations. Intermetallics, 2016, 68, 5-10.	3.9	23
136	Designing eutectic high entropy alloys of CoCrFeNiNb x. Journal of Alloys and Compounds, 2016, 656, 284-289.	5.5	340
137	Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. Scientific Reports, 2015, 5, 16327.	3.3	80
138	Design of high entropy alloys based on the experience from commercial superalloys. Philosophical Magazine Letters, 2015, 95, 1-6.	1.2	22
139	The corrosion behavior of sintering micro-porous Ni–Cu alloy in hydrofluoric acid solution. Journal of Alloys and Compounds, 2015, 638, 7-13.	5.5	19
140	Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015, 60, 1-8.	3.9	326
141	Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses. Journal of Alloys and Compounds, 2015, 627, 48-53.	5.5	27
142	The generalized thermodynamic rule for phase selection in multicomponent alloys. Intermetallics, 2015, 59, 75-80.	3.9	108
143	Effects of boron on the fracture behavior and ductility of cast Ti–6Al–4V alloys. Scripta Materialia, 2015, 100, 90-93.	5.2	28
144	Effects of boron additions and solutionizing treatments on microstructures and ductility of forged Ti–6Al–4V alloys. Journal of Alloys and Compounds, 2015, 624, 170-178.	5.5	22

#	Article	IF	CITATIONS
145	Softening-induced plastic flow instability and indentation size effect in metallic glass. Journal of the Mechanics and Physics of Solids, 2015, 77, 70-85.	4.8	36
146	Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Materialia, 2015, 97, 58-67.	7.9	186
147	Unusual fast secondary relaxation in metallic glass. Nature Communications, 2015, 6, 7876.	12.8	158
148	Design of high entropy alloys: A single-parameter thermodynamic rule. Scripta Materialia, 2015, 104, 53-55.	5.2	209
149	A geometric model for intrinsic residual strain and phase stability in high entropy alloys. Acta Materialia, 2015, 94, 152-161.	7.9	141
150	Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements. Intermetallics, 2015, 64, 63-69.	3.9	127
151	Mo doped porous Ni–Cu alloy as cathode for hydrogen evolution reaction in alkaline solution. RSC Advances, 2015, 5, 82078-82086.	3.6	31
152	On the source of plastic flow in metallic glasses: Concepts and models. Intermetallics, 2015, 67, 81-86.	3.9	99
153	Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles. Acta Materialia, 2015, 84, 283-291.	7.9	108
154	Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Materialia, 2015, 84, 145-152.	7.9	193
155	Quantitatively defining free-volume, interconnecting-zone and cluster in metallic glasses. Intermetallics, 2015, 57, 98-100.	3.9	8
156	Atomic-size effect and solid solubility of multicomponent alloys. Scripta Materialia, 2015, 94, 28-31.	5.2	339
157	Origin of yielding in metallic glass: Stress-induced flow. Applied Physics Letters, 2014, 104, 251901.	3.3	10
158	Delayed shear banding and evolution of local plastic flow in a metallic glass. Applied Physics Letters, 2014, 105, .	3.3	16
159	The Phase Competition and Stability of High-Entropy Alloys. Jom, 2014, 66, 1973-1983.	1.9	60
160	Solid solutioning in equiatomic alloys: Limit set by topological instability. Journal of Alloys and Compounds, 2014, 583, 410-413.	5.5	96
161	Improved ductility and oxidation resistance of cast Ti–6Al–4V alloys by microalloying. Journal of Alloys and Compounds, 2014, 602, 235-240.	5.5	54
162	Phase stability and tensile properties of Co-free Al0.5CrCuFeNi2 high-entropy alloys. Journal of Alloys and Compounds, 2014, 584, 530-537.	5.5	116

#	Article	IF	CITATIONS
163	Effect of size and base-element on the jerky flow dynamics in metallic glass. Acta Materialia, 2014, 63, 180-190.	7.9	54
164	Quantitatively defining interconnecting-zone in metallic glasses. Intermetallics, 2014, 49, 36-39.	3.9	6
165	Phase Selection in High-Entropy Alloys: From Nonequilibrium to Equilibrium. Jom, 2014, 66, 1966-1972.	1.9	132
166	Structure Heterogeneity in Metallic Glass: Modeling and Experiment. Journal of Materials Science and Technology, 2014, 30, 560-565.	10.7	55
167	The stability of hydrogen evolution activity and corrosion behavior of porous Ni3Al–Mo electrode in alkaline solution during long-term electrolysis. Energy, 2014, 67, 19-26.	8.8	34
168	High-strength steels hardened mainly by nanoscale NiAl precipitates. Scripta Materialia, 2014, 87, 45-48.	5.2	95
169	First-principles prediction of the glass-forming ability in Zr–Ni binary metallic glasses. Intermetallics, 2014, 53, 177-182.	3.9	8
170	Nanoindentation characterized initial creep behavior of a high-entropy-based alloy CoFeNi. Intermetallics, 2014, 53, 183-186.	3.9	47
171	Probing Stochastic Nano-Scale Inelastic Events in Stressed Amorphous Metal. Scientific Reports, 2014, 4, 6699.	3.3	13
172	The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Scientific Reports, 2014, 4, 4648.	3.3	70
173	Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure. Scientific Reports, 2014, 4, 4757.	3.3	77
174	Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels. Acta Materialia, 2013, 61, 5996-6005.	7.9	188
175	Characterization of porous Ni3Al electrode for hydrogen evolution in strong alkali solution. Materials Chemistry and Physics, 2013, 141, 553-561.	4.0	34
176	Yielding and shear banding of metallic glasses. Acta Materialia, 2013, 61, 5928-5936.	7.9	62
177	The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Materialia, 2013, 61, 4329-4338.	7.9	141
178	Characterization of the porous Ni3Al–Mo electrodes during hydrogen generation from alkaline water electrolysis. Energy, 2013, 63, 216-224.	8.8	30
179	Sunflower-like Solidification Microstructure in a Near-eutectic High-entropy Alloy. Materials Research Letters, 2013, 1, 228-232.	8.7	53
180	Effect of molten quenching temperature on glass-forming ability of nanoquasi-crystal-forming Zr-based metallic glasses. Scripta Materialia, 2013, 68, 534-537.	5.2	13

#	Article	IF	CITATIONS
181	Pore structure control for porous FeAl intermetallics. Intermetallics, 2013, 32, 423-428.	3.9	25
182	High strength and plastic strain of Mg-based bulk metallic glass composite containing in situ formed intermetallic phases. Scripta Materialia, 2013, 68, 150-153.	5.2	15
183	Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys. Acta Materialia, 2013, 61, 7726-7740.	7.9	85
184	Microstructure characterization of Cu-rich nanoprecipitates in a Fe–2.5 Cu–1.5 Mn–4.0 Ni–1.0 Al multicomponent ferritic alloy. Acta Materialia, 2013, 61, 2133-2147.	7.9	153
185	Influence of the molten quenching temperature on the thermal physical behavior of quenched Zr-based metallic glasses. Intermetallics, 2013, 38, 19-22.	3.9	5
186	Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. Journal of Alloys and Compounds, 2013, 557, 77-81.	5.5	210
187	More than entropy in high-entropy alloys: Forming solid solutions orÂamorphous phase. Intermetallics, 2013, 41, 96-103.	3.9	531
188	A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Scientific Reports, 2013, 3, 1327.	3.3	79
189	First-principles prediction and experimental verification of glass-forming ability in Zr-Cu binary metallic glasses. Scientific Reports, 2013, 3, 2124.	3.3	34
190	Tortuosity factor for porous FeAl intermetallics fabricated by reactive synthesis. Transactions of Nonferrous Metals Society of China, 2012, 22, 2179-2183.	4.2	26
191	Thermographic studies of temperature evolutions in bulk metallic glasses: An overview. Intermetallics, 2012, 30, 1-11.	3.9	20
192	New NiAl-strengthened ferritic steels with balanced creep resistance and ductility designed by coupling thermodynamic calculations with focused experiments. Intermetallics, 2012, 29, 110-115.	3.9	40
193	Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics, 2012, 31, 165-172.	3.9	252
194	Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Materialia, 2012, 60, 5260-5272.	7.9	105
195	Changes in the atomic structure through glass transition observed by X-ray scattering. Intermetallics, 2012, 23, 111-115.	3.9	4
196	Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties. Intermetallics, 2012, 28, 25-33.	3.9	69
197	Pore evolution regulation in synthesis of open pore structured Ti–Al intermetallic compounds by solid diffusion. Journal of Alloys and Compounds, 2012, 521, 12-15.	5.5	23
198	Unusual thermal stability of nano-structured ferritic alloys. Journal of Alloys and Compounds, 2012, 529, 96-101.	5.5	30

#	Article	IF	CITATIONS
199	Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Materialia, 2012, 60, 5686-5696.	7.9	65
200	Effect of surface modifications on shear banding and plasticity in metallic glasses: An overview. Progress in Natural Science: Materials International, 2012, 22, 355-363.	4.4	33
201	Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions. Acta Materialia, 2012, 60, 3034-3046.	7.9	58
202	Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system. Materials Letters, 2012, 71, 36-40.	2.6	23
203	Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 541, 22-27.	5.6	35
204	Innovative processing of high-strength and low-cost ferritic steels strengthened by Y–Ti–O nanoclusters. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 544, 59-69.	5.6	27
205	Influence of Aging and Thermomechanical Treatments on the Mechanical Properties of a Nanocluster-Strengthened Ferritic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 351-359.	2.2	39
206	Size effect on stability of shear-band propagation in bulk metallic glasses: an overview. Journal of Materials Science, 2012, 47, 55-67.	3.7	77
207	Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nature Materials, 2011, 10, 922-926.	27.5	306
208	Atomic migration and bonding characteristics during a glass transition investigated using as-cast Zr-Cu-Al. Physical Review B, 2011, 83, .	3.2	19
209	Atomic-Scale Structural Evolution and Stability of Supercooled Liquid of a Zr-Based Bulk Metallic Glass. Physical Review Letters, 2011, 106, 215505.	7.8	93
210	Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 2011, 109, .	2.5	1,623
211	Cooling rate effect on Young's modulus and hardness of a Zr-based metallic glass. Journal of Alloys and Compounds, 2011, 509, 3269-3273.	5.5	36
212	A Ni-free Zr-based bulk metallic glass with remarkable plasticity. Journal of Alloys and Compounds, 2011, 509, S109-S114.	5.5	24
213	Hydrogen diffusivity in B-doped and B-free ordered Ni3Fe alloys. Intermetallics, 2011, 19, 105-108.	3.9	6
214	Dual character of stable shear banding in bulk metallic glasses. Intermetallics, 2011, 19, 1005-1013.	3.9	9
215	The corrosion behavior of porous Ni3Al intermetallic materials in strong alkali solution. Intermetallics, 2011, 19, 1759-1765.	3.9	41
216	Microstructural evolution of (TiAl)+Nb+W+B alloy. Transactions of Nonferrous Metals Society of China, 2011, 21, 2192-2198.	4.2	20

#	Article	IF	CITATIONS
217	Criterion to control self-propagation high temperature synthesis for porous Ti–Al intermetallics. Powder Metallurgy, 2011, 54, 404-407.	1.7	12
218	Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide. International Journal of Materials Research, 2011, 102, 160-167.	0.3	5
219	Effect of boron on the fracture behavior and grain boundary chemistry of Ni3Fe. Scripta Materialia, 2011, 64, 303-306.	5.2	15
220	Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scripta Materialia, 2011, 64, 868-871.	5.2	69
221	Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 2011, 21, 433-446.	4.4	1,546
222	Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2011, 36, 12112-12120.	7.1	99
223	Atomic packing symmetry in the metallic liquid and glass states. Acta Materialia, 2011, 59, 6480-6488.	7.9	44
224	Boron effects on the ductility of a nano-cluster-strengthened ferritic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 855-859.	5.6	26
225	Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process. Journal of Crystal Growth, 2011, 316, 137-144.	1.5	12
226	Effect of Al content on porous Ni–Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4849-4855.	5.6	49
227	Microstructures and mechanical properties of Fe–14Cr–3W–Ti–Y2O3 steel with 1wt.% Cu addition fabricated by a new method. Journal of Nuclear Materials, 2011, 414, 422-425.	2.7	5
228	Size-affected shear-band speed in bulk metallic glasses. Applied Physics Letters, 2011, 99, 171904.	3.3	12
229	From embryos to precipitates: A study of nucleation and growth in a multicomponent ferritic steel. Physical Review B, 2011, 84, .	3.2	40
230	Congenerous and heterogeneous brazing of porous FeAl intermetallics. Powder Metallurgy, 2011, 54, 142-147.	1.7	4
231	Novel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD. Nanotechnology, 2011, 22, 405704.	2.6	22
232	Correlation between primary phases and atomic clusters in a Zr-based metallic glass. Journal of Applied Physics, 2010, 108, .	2.5	9
233	Synthesis and characterization of porous Fe–25 wt.% Al alloy with controllable pore structure. Powder Metallurgy and Metal Ceramics, 2010, 49, 183-192	0.8	6
234	Oxidation behavior of porous NiAl prepared through reactive synthesis. Materials Chemistry and Physics, 2010, 122, 417-423.	4.0	45

#	Article	IF	CITATIONS
235	Characterization of nanoscale NiAl-type precipitates in a ferritic steel by electron microscopy and atom probe tomography. Scripta Materialia, 2010, 63, 61-64.	5.2	94
236	Bulk Metallic Glass Composites with Transformationâ€Mediated Workâ€Hardening and Ductility. Advanced Materials, 2010, 22, 2770-2773.	21.0	431
237	Formation of oxides particles in ferritic steel by using gas-atomized powder. Journal of Nuclear Materials, 2010, 396, 86-93.	2.7	19
238	Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Materials, 2010, 9, 619-623.	27.5	392
239	Metallic Liquids and Glasses: Atomic Order and Global Packing. Physical Review Letters, 2010, 105, 155501.	7.8	157
240	Characteristic length scales governing plasticity/brittleness of bulk metallic glasses at ambient temperature. Applied Physics Letters, 2010, 96, 011905.	3.3	31
241	The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by Bridgman solidification. Intermetallics, 2010, 18, 115-118.	3.9	11
242	Identify the best glass forming ability criterion. Intermetallics, 2010, 18, 883-888.	3.9	80
243	Effects of Al on the microstructure and ductility of NiAl-strengthened ferritic steels at room temperature. Intermetallics, 2010, 18, 1437-1443.	3.9	73
244	Evolution of shear bands and its correlation with mechanical response of a ductile Zr55Pd10Cu20Ni5Al10 bulk metallic glass. Intermetallics, 2010, 18, 1455-1464.	3.9	40
245	New glass forming ability criterion derived from cooling consideration. Intermetallics, 2010, 18, 2065-2068.	3.9	62
246	Evolution of atomic ordering in metallic glasses. Intermetallics, 2010, 18, 2333-2337.	3.9	9
247	Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites. Intermetallics, 2010, 18, 2425-2430.	3.9	42
248	Effect of preheating treatment at 575 ŰC of green compacts on porous NiAl. Journal of Alloys and Compounds, 2010, 492, 219-225.	5.5	22
249	Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy. Physical Review B, 2009, 79, .	3.2	33
250	Enhanced plasticity in a Zr-based bulk metallic glass composite with <i>in situ</i> formed intermetallic phases. Applied Physics Letters, 2009, 95, .	3.3	33
251	Deformation Crossover: From Nano- to Mesoscale. Physical Review Letters, 2009, 103, 035502.	7.8	51
252	Effect of atomic ordering on hydrogen dissociation on Ni3Fe surfaces. Applied Physics Letters, 2009, 94. 111902.	3.3	8

#	Article	IF	CITATIONS
253	Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength. Physical Review Letters, 2009, 103, 065504.	7.8	131
254	MECHANICAL PROPERTIES OF BULK METALLIC GLASSES AT CRYOGENIC TEMPERATURES. Modern Physics Letters B, 2009, 23, 2703-2722.	1.9	9
255	Directional recrystallization and microstructures of an Fe–6.5wt%Si alloy. Journal of Materials Research, 2009, 24, 2654-2660.	2.6	19
256	A quantitative link between microplastic instability and macroscopic deformation behaviors in metallic glasses. Journal of Applied Physics, 2009, 106, 083512.	2.5	12
257	Synchrotron X-ray scattering investigations of oxygen-induced nucleation in a Zr-based glass-forming alloy. Scripta Materialia, 2009, 61, 293-295.	5.2	6
258	Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength. Scripta Materialia, 2009, 61, 793-796.	5.2	103
259	Reactive synthesis of microporous titanium-aluminide membranes. Materials Letters, 2009, 63, 22-24.	2.6	43
260	Nanoscale Solute Partitioning in Bulk Metallic Glasses. Advanced Materials, 2009, 21, 305-308.	21.0	36
261	Structure and Fieldâ€Emission Properties of Subâ€Micrometerâ€Sized Tungstenâ€Whisker Arrays Fabricated by Vapor Deposition. Advanced Materials, 2009, 21, 2387-2392.	21.0	77
262	Evaluation of Mn substitution for Ni in alumina-forming austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 524, 176-185.	5.6	56
263	Structural characteristics and high-temperature oxidation behavior of porous Fe–40Âat.%Al alloy. Journal of Materials Science, 2009, 44, 4413-4421.	3.7	24
264	Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels. Frontiers of Materials Science in China, 2009, 3, 9-14.	0.5	43
265	Mechanical properties of single crystal tungsten microwhiskers characterized by nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 193-198.	5.6	56
266	Development of a new graded-porosity FeAl alloy by elemental reactive synthesis. Desalination, 2009, 249, 29-33.	8.2	28
267	Effects of Al content on porous Fe–Al alloys. Powder Metallurgy, 2009, 52, 158-163.	1.7	13
268	Viscous flow and microforming of a Zr-base bulk metallic glass. Intermetallics, 2009, 17, 200-204.	3.9	22
269	The oxidation behavior of an Fe61B15Zr8Mo7Co5Y2Cr2 bulk metallic glass at 550–700°C. Intermetallics, 2009, 17, 205-210.	3.9	18
270	Atomistic model of amorphous materials. Intermetallics, 2009, 17, 86-87.	3.9	48

#	Article	IF	CITATIONS
271	Nanocrystallization of Zr61Al7.5Cu17.5Ni10Si4 metallic glass. Intermetallics, 2009, 17, 56-64.	3.9	15
272	The oxidation behavior of an Fe61B15Zr8Mo7Co5Y2Cr2 bulk metallic glass at 650°C in various oxygen-containing environments. Intermetallics, 2009, 17, 165-168.	3.9	16
273	Controlled normal/shear loading and shear fracture in bulk metallic glasses. Intermetallics, 2009, 17, 802-810.	3.9	8
274	Casting effect on softening of metallic glasses. Journal of Alloys and Compounds, 2009, 483, 82-85.	5.5	2
275	Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon. Journal of Alloys and Compounds, 2009, 478, 215-219.	5.5	44
276	Formation of porous Ni–Al intermetallics through pressureless reaction synthesis. Journal of Alloys and Compounds, 2009, 484, 907-913.	5.5	72
277	Porous FeAl intermetallics fabricated by elemental powder reactive synthesis. Intermetallics, 2009, 17, 1041-1046.	3.9	98
278	The development of alumina-forming austenitic stainless steels for high-temperature structural use. Jom, 2008, 60, 12-18.	1.9	136
279	Atomistic mechanism for nanocrystallization of metallic glasses. Acta Materialia, 2008, 56, 2760-2769.	7.9	73
280	Fatigue behavior of Zr-based bulk-metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 494, 314-323.	5.6	44
281	Shear fracture of bulk metallic glasses with controlled applied normal stresses. Scripta Materialia, 2008, 59, 111-114.	5.2	18
282	Catalytic growth of metallic tungsten whiskers based on the vapor–solid–solid mechanism. Nanotechnology, 2008, 19, 345604.	2.6	18
283	Effects of alloying elements on dendritic segregation in iridium alloys. Journal of Alloys and Compounds, 2008, 459, 130-134.	5.5	6
284	Effects of the Al content on pore structures of porous Ti–Al alloys. Intermetallics, 2008, 16, 327-332.	3.9	91
285	Composition effects on glass-forming ability and its indicator \hat{I}^3 . Intermetallics, 2008, 16, 410-417.	3.9	14
286	Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates. Intermetallics, 2008, 16, 453-462.	3.9	130
287	Effect of alloy stoichiometry and boron doping on the H2-induced environmental embrittlement of Ni3Fe intermetallics. Intermetallics, 2008, 16, 550-553.	3.9	9
288	Effect of heating rate on pore structure of porous FeAl material. Powder Metallurgy, 2008, 51, 171-175.	1.7	21

#	Article	IF	CITATIONS
289	A study of the corrosion behaviour of Zr50Cu(40â^'X)Al10PdX bulk metallic glasses with scanning Auger microanalysis. Corrosion Science, 2008, 50, 1825-1832.	6.6	47
290	Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 °C. Journal of Materials Research, 2008, 23, 72-77.	2.6	11
291	Influence of molten status on nanoquasicrystalline-forming Zr-based metallic glasses. Applied Physics Letters, 2008, 93, .	3.3	6
292	Oxygen effects on plastic deformation of a Zr-based bulk metallic glass. Applied Physics Letters, 2008, 92, .	3.3	44
293	Heterogeneous nucleation in a glass-forming alloy. Applied Physics Letters, 2008, 92, .	3.3	14
294	Improvement of magnetic properties of an Fe-6.5â€,wt. % Si alloy by directional recrystallization. Applied Physics Letters, 2008, 93, .	3.3	21
295	Physical factors controlling the ductility of bulk metallic glasses. Applied Physics Letters, 2008, 93, .	3.3	29
296	Evaluation Of Glass-Forming Ability. , 2008, , 87-115.		5
297	Creep-Resistant, Al2O3-Forming Austenitic Stainless Steels. Science, 2007, 316, 433-436.	12.6	337
298	New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007, 101, 086108.	2.5	142
299	Growth mechanism from nano-ordered clusters to nanocrystals in a deeply undercooled melt of Zr-Ni-Ti metallic glass. Journal of Applied Physics, 2007, 102, 063515.	2.5	13
300	Mechanical behavior of a Zr-based bulk metallic glass and its composite at cryogenic temperatures. Journal of Materials Research, 2007, 22, 445-452.	2.6	25
301	Development of Mg Based Amorphous Alloys with Higher Amounts of Rare Earth Elements. Materials Transactions, 2007, 48, 1621-1625.	1.2	3
302	Glass Forming Ability and Thermal Properties of the Mg-Based Amorphous Alloys with Dual Rare Earth Elements Addition. Materials Transactions, 2007, 48, 1684-1688.	1.2	8
303	A Scheme to Design Multi-Component Bulk Metallic Glasses in <i>Ideal</i> Glass-Forming Liquids. Materials Transactions, 2007, 48, 2476-2482.	1.2	7
304	Influence of air and vacuum environment on fatigue behavior of Zr-based bulk metallic glasses. Journal of Alloys and Compounds, 2007, 434-435, 68-70.	5.5	17
305	Competitive formation of glasses and glass–matrix composites. Intermetallics, 2007, 15, 253-259.	3.9	29
306	The Soret effect in bulk metallic glasses. Intermetallics, 2007, 15, 557-563.	3.9	8

#	Article	IF	CITATIONS
307	Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics, 2007, 15, 618-624.	3.9	91
308	Studying fatigue behavior and Poisson's ratio of bulk-metallic glasses. Intermetallics, 2007, 15, 663-667.	3.9	26
309	A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics, 2007, 15, 1208-1216.	3.9	68
310	Cooling-rate induced softening in a Zr50Cu50 bulk metallic glass. Applied Physics Letters, 2007, 90, 071909.	3.3	62
311	Corrosion–fatigue studies of the Zr-based Vitreloy 105 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 467, 198-206.	5.6	32
312	Four-point-bending-fatigue behavior of the Zr-based Vitreloy 105 bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 467, 190-197.	5.6	54
313	Magnetism and solid solution effects in NiAl (40% Al) alloys. Progress in Materials Science, 2007, 52, 352-370.	32.8	30
314	Synthesis of tungsten oxide tapered needles with nanotips. Journal of Crystal Growth, 2007, 303, 574-579.	1.5	8
315	Synthesis of single-crystalline tungsten nanowires by nickel-catalyzed vapor-phase method at 850°C. Journal of Crystal Growth, 2007, 306, 433-436.	1.5	31
316	Neutron diffraction study of the structure and low-temperature phase transformation in ternary NiAl+M (M=Ni,Fe,Co) alloys. Scripta Materialia, 2007, 56, 911-914.	5.2	7
317	Development of porosity in an oxide dispersion-strengthened ferritic alloy containing nanoscale oxide particles. Scripta Materialia, 2007, 57, 1040-1043.	5.2	41
318	Mössbauer spectroscopic study of a low temperature magnetic transition in ordered Fe-doped NiAl. Hyperfine Interactions, 2007, 175, 175-183.	0.5	0
319	Microstructural Control of Ti-Al-Nb-W-B Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2290-2297.	2.2	11
320	Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2737-2746.	2.2	139
321	Influence of boron-doping on the H2-induced environmental embrittlement of Ni3Fe intermetallics. Journal of Shanghai University, 2007, 11, 102-105.	0.1	0
322	Novel tungsten oxide microneedles with nanosized tips. Applied Physics Letters, 2006, 88, 223107.	3.3	6
323	Thermal diffusion and compositional inhomogeneity in cast Zr50Cu50 bulk metallic glass. Applied Physics Letters, 2006, 89, 051919.	3.3	17
324	Localized heating and fracture criterion for bulk metallic glasses. Journal of Materials Research, 2006, 21, 915-922.	2.6	106

#	Article	IF	CITATIONS
325	Molecular dynamic simulations and atomic structures of amorphous materials. Applied Physics Letters, 2006, 88, 203115.	3.3	20
326	Thermal stability and crystallization of Zr–Al–Cu–Ni based amorphous alloy added with boron and silicon. Intermetallics, 2006, 14, 951-956.	3.9	23
327	APT characterization of some iron-based bulk metallic glasses. Intermetallics, 2006, 14, 1019-1026.	3.9	19
328	Reflections on the Fourth International Conference on Bulk Metallic Glasses. Intermetallics, 2006, 14, 855-856.	3.9	1
329	Formation and growth mechanism of tungsten oxide microtubules. Chemical Physics Letters, 2006, 427, 350-355.	2.6	11
330	Design of powder metallurgy titanium alloys and composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 418, 25-35.	5.6	243
331	Innovative processing and property improvement of metallic glass based composites. Scripta Materialia, 2006, 55, 375-378.	5.2	56
332	Minor additions of Sn in a bulk glass-forming Fe-based system. Journal of Materials Research, 2006, 21, 3180-3186.	2.6	5
333	Unified equation for the strength of bulk metallic glasses. Applied Physics Letters, 2006, 88, 221911.	3.3	187
334	Pair distribution function study and mechanical behavior of as-cast and structurally relaxed Zr-based bulk metallic glasses. Applied Physics Letters, 2006, 89, 231920.	3.3	26
335	Structures and mechanical behaviors ofZr55Cu35Al10bulk amorphous alloys at ambient and cryogenic temperatures. Physical Review B, 2006, 74, .	3.2	48
336	Mechanical Behavior of Bulk Amorphous Alloys Reinforced by Ductile Particles at Cryogenic Temperatures. Physical Review Letters, 2006, 96, 145506.	7.8	85
337	A combined drop/suction-casting machine for the manufacture of bulk-metallic-glass materials. Review of Scientific Instruments, 2006, 77, 033902.	1.3	27
338	Structural model for bulk amorphous alloys. Applied Physics Letters, 2006, 89, 111905.	3.3	56
339	Binary eutectic clusters and glass formation in ideal glass-forming liquids. Applied Physics Letters, 2006, 89, 071910.	3.3	51
340	Thermodynamic modeling of glass formation in metallic glasses. Applied Physics Letters, 2006, 88, 171905.	3.3	89
341	Nanoclustering in a MA/ODS Ferritic Alloy. , 2006, , .		0
342	Light emission, chip morphology, and burr formation in drilling the bulk metallic glass. International Journal of Machine Tools and Manufacture, 2005, 45, 741-752.	13.4	80

#	Article	IF	CITATIONS
343	Effects of Fe additions on the mechanical properties and oxidation behavior of CrTa Laves phase reinforced Cr. Scripta Materialia, 2005, 52, 815-819.	5.2	30
344	The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. Journal of Biomedical Materials Research - Part A, 2005, 74A, 430-438.	4.0	101
345	Effect of Ru additions on microstructure and mechanical properties of Cr–TaCr2 alloys. Intermetallics, 2005, 13, 361-366.	3.9	11
346	Temperature evolution during fatigue damage. Intermetallics, 2005, 13, 419-428.	3.9	55
347	Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics, 2005, 13, 415-418.	3.9	104
348	Fatigue behavior of Zr–Ti–Ni–Cu–Be bulk-metallic glasses. Intermetallics, 2005, 13, 429-435.	3.9	106
349	Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Applied Physics Letters, 2005, 86, 141904.	3.3	177
350	Bulk Glass Formation in an Fe-Based Fe–Y–Zr–M (M = Cr, Co, Al)–Mo–B System. Journal of Materials Research, 2004, 19, 921-929.	2.6	39
351	Machining of a Zr–Ti–Al–Cu–Ni metallic glass. Scripta Materialia, 2004, 50, 583-588.	5.2	75
352	Role of minor alloying additions in formation of bulk metallic glasses: A Review. Journal of Materials Science, 2004, 39, 3965-3974.	3.7	257
353	Oxidation and crystallization of Zr-based bulk metallic glass due to machining. Intermetallics, 2004, 12, 195-204.	3.9	83
354	Magnetism-induced solid solution softening in NiAl with Co, Fe, Mn, and Cr solute atoms: theory and experiment. Intermetallics, 2004, 12, 911-919.	3.9	23
355	Oxidation behavior of multiphase Mo–Si–B alloys. Intermetallics, 2004, 12, 721-725.	3.9	53
356	Effect of iron additions on environmental embrittlement of NiTi-base alloys. Intermetallics, 2004, 12, 859-868.	3.9	11
357	Glass transition and crystallization of Mg–Ni–Nd metallic glasses studied by temperature-modulated DSC. Intermetallics, 2004, 12, 869-874.	3.9	22
358	Fatigue behavior of bulk-metallic glasses. Intermetallics, 2004, 12, 885-892.	3.9	132
359	In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments. Intermetallics, 2004, 12, 1265-1274.	3.9	95
360	A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics, 2004, 12, 1035-1043.	3.9	108

#	Article	IF	CITATIONS
361	Fatigue behavior and fracture morphology of Zr50Al10Cu40 and Zr50Al10Cu30Ni10 bulk-metallic glasses. Intermetallics, 2004, 12, 1219-1227.	3.9	74
362	Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses. Journal of Non-Crystalline Solids, 2004, 341, 93-100.	3.1	53
363	Structural Amorphous Steels. Physical Review Letters, 2004, 92, 245503.	7.8	534
364	Effects of microstructure on the oxidation behavior of multiphase Mo–Si–B alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 328-339.	5.6	105
365	Adiabatic temperature of combustion synthesis of Al–Ni systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 357, 248-257.	5.6	54
366	Role of yttrium in glass formation of Fe-based bulk metallic glasses. Applied Physics Letters, 2003, 83, 2581-2583.	3.3	263
367	The fatigue behavior of a zirconium-based bulk metallic glass in vacuum and air. Journal of Non-Crystalline Solids, 2003, 317, 187-192.	3.1	71
368	Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions. Materials Letters, 2003, 57, 3022-3025.	2.6	23
369	Structure and composition of Laves phases in binary Cr–Nb, Cr–Zr and ternary Cr–(Nb, Zr) alloys. Intermetallics, 2003, 11, 677-685.	3.9	30
370	Direct observation of a concealed glass transition in a Mg–Ni–Nd metallic glass. Applied Physics Letters, 2003, 82, 862-864.	3.3	10
371	Glass-forming tendency of bulk La–Al–Ni–Cu–(Co) metallic glass-forming liquids. Journal of Applied Physics, 2003, 93, 286-290.	2.5	76
372	Enthalpies of formation of binary Laves phases. Intermetallics, 2002, 10, 579-595.	3.9	104
373	Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics, 2002, 10, 1157-1162.	3.9	180
374	Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics, 2002, 10, 1105-1112.	3.9	224
375	Fatigue behavior of Zr52.5Al10Ti5Cu17.9Ni14.6 bulk metallic glass. Intermetallics, 2002, 10, 1125-1129.	3.9	110
376	Microstructures and properties of a hot-extruded TiAl containing no Cr. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 416-423.	5.6	25
377	Site occupancies, point defect concentrations, and solid solution hardening in B2 (Ni,Fe)Al. Acta Materialia, 2002, 50, 3859-3879.	7.9	59
378	Reaction mechanism of combustion synthesis of NiAl. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 57-68.	5.6	124

#	Article	IF	CITATIONS
379	Effects of processing on the microstructure and mechanical behavior of binary Cr–Ta alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 329-331, 696-702.	5.6	5
380	A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002, 50, 3501-3512.	7.9	1,162
381	Deformation of a multiphase Mo–9.4Si–13.8B alloy at elevated temperatures. Intermetallics, 2001, 9, 73-79.	3.9	102
382	Microstructure control and tensile properties of three-phase alloys based on the E21 Co3AlC and B2 CoAl. Intermetallics, 2001, 9, 1069-1078.	3.9	21
383	Moisture induced environmental embrittlement of intermetallics. International Materials Reviews, 2001, 46, 253-270.	19.3	44
384	Structural stability of the Laves phase Cr2Ta in a two-phase Cr–Cr2Ta alloy. Acta Materialia, 2000, 48, 911-923.	7.9	52
385	Environmental effects on the tensile properties of two Ni3Si-Based alloys. Scripta Materialia, 2000, 42, 265-270.	5.2	25
386	Oxidation resistance and mechanical properties of Laves phase reinforced Cr in-situ composites. Intermetallics, 2000, 8, 1111-1118.	3.9	50
387	Emerging applications of intermetallics. Intermetallics, 2000, 8, 1313-1320.	3.9	504
388	The effect of vacancies on the environmental yield strength dependence of boron-free and boron-doped Fe-40Al. Intermetallics, 2000, 8, 1413-1416.	3.9	20
389	Physical metallurgy and mechanical properties of transition-metal Laves phase alloys. Intermetallics, 2000, 8, 1119-1129.	3.9	198
390	Thermal conductivity of Ni-Al powder compacts for reaction synthesis. Intermetallics, 2000, 8, 151-155.	3.9	22
391	Interaction of H2O and O2 with Ni3Fe and their effects on ductility. Intermetallics, 2000, 8, 353-357.	3.9	10
392	Point defects in binary Laves phase alloys. Acta Materialia, 1999, 47, 2003-2018.	7.9	92
393	Thermal stresses due to spheroidal inclusions. Materials Chemistry and Physics, 1999, 61, 207-213.	4.0	8
394	Superplastic behavior of a Zr–10Al–5Ti-–17.9Cu–14.6Ni metallic glass in the supercooled liquid region. Scripta Materialia, 1999, 40, 1021-1027.	5.2	87
395	Environmental effects in NiTi-based alloys. Scripta Materialia, 1999, 41, 55-60.	5.2	11
396	Phase stability and mechanical behavior of NbCr2-based Laves phases. Intermetallics, 1999, 7, 1011-1016.	3.9	52

#	Article	IF	CITATIONS
397	Pinning of dislocations and the origin of the stress anomaly in FeAl alloys. Intermetallics, 1999, 7, 1059-1068.	3.9	24
398	Reply to "A Comment on Hydrogen-Boron Interaction and Its Effect on the Ductility and Fracture of Ni3Al― Scripta Materialia, 1998, 38, 847-850.	5.2	2
399	Microstructural control and mechanical properties of dual-phase TiAl alloys. Intermetallics, 1998, 6, 653-661.	3.9	152
400	Effects of B and W alloying additions on the formation and stability of lamellar structures in two-phase Î ³ -TiAl. Intermetallics, 1997, 5, 83-95.	3.9	65
401	HYDROGEN-BORON INTERACTION AND ITS EFFECT ON THE DUCTILITY AND FRACTURE OF Ni3Al. Acta Materialia, 1997, 45, 2801-2811.	7.9	30
402	Fracture in Ni3Al: Environmental and Dopant Effects. Physica Status Solidi A, 1997, 160, 517-529.	1.7	17
403	Low temperature embrittlement of Ni3(Si, Ti) alloys. Intermetallics, 1996, 4, 309-318.	3.9	14
404	Grain-boundary fracture and boron effect in Ni3Si alloys. Intermetallics, 1996, 4, 77-83.	3.9	66
405	Effect of low-pressure hydrogen on the room-temperature tensile ductility and fracture behavior of Ni3Al. Intermetallics, 1996, 4, 497-502.	3.9	39
406	Tensile properties and fracture toughness of TiAl alloys with controlled microstructures. Intermetallics, 1996, 4, 429-440.	3.9	266
407	Direct evidence of hydrogen generation from the reaction of water with FeAl. Scripta Materialia, 1996, 35, 1435-1439.	5.2	29
408	Effects of ordered state on environmental embrittlement in (Co,Fe)3V. Scripta Materialia, 1996, 35, 1441-1447.	5.2	8
409	Effects of alloy additions on the microstructure and properties of CrCr2Nb alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 214, 23-32.	5.6	63
410	Mechanical behavior of Ni3Al: Effects of environment, strain rate, temperature and boron doping. Acta Materialia, 1996, 44, 1757-1763.	7.9	65
411	The thermal stability of the microstructure of γ-based titanium aluminides. Acta Materialia, 1996, 44, 2611-2642.	7.9	82
412	Effect of refractory alloying additions on mechanical properties of near-stoichiometric NiAl. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 170-178.	5.6	52
413	Environmental embrittlement and other causes of brittle grain boundary fracture in Ni3Al. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 277-288.	5.6	51
414	Reaction synthesis of Feî—,Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 544-548.	5.6	38

#	Article	IF	CITATIONS
415	The oxidation of Ni3Si-base alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 191, 223-231.	5.6	20
416	Shape memory properties of a two-phase NiAl plus Fe alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 873-880.	5.6	9
417	Dislocation morphology, structure and density on (001) slip plane in Ni3(Al,Ti) single crystals deformed at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 769-773.	5.6	3
418	Recent advances in ordered intermetallics. Materials Chemistry and Physics, 1995, 42, 77-86.	4.0	111
419	Kinetic and equilibrium effects in the environmental embrittlement of ordered intermetallics. Scripta Metallurgica Et Materialia, 1995, 33, 661-668.	1.0	20
420	Intrinsic ductility of FeAl single crystals. Intermetallics, 1995, 3, 77-81.	3.9	41
421	Processing of Fe3Al and FeAl alloys by reaction synthesis. Intermetallics, 1995, 3, 467-481.	3.9	42
422	Microstructural characterization of A γ-TiAl-Ni alloy produced by rapid solidification techniques. Scripta Metallurgica Et Materialia, 1995, 32, 383-388.	1.0	7
423	Deep drawing of Ir-0.3%W alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 187, 155-160.	5.6	4
424	Site occupation of iron in intermetallic NiAl. Applied Surface Science, 1994, 76-77, 155-159.	6.1	24
425	Characterization, processing, and alloy design of NiAl-based shape memory alloys. Materials Characterization, 1994, 32, 139-160.	4.4	36
426	Effects of aluminum concentration and compact thickness on reaction synthesis of Ni3Alî—,NiAl alloys. Intermetallics, 1994, 2, 297-313.	3.9	25
427	Effect of vacuum on room-temperature ductility of Ni3Al. Scripta Metallurgica Et Materialia, 1994, 30, 37-42.	1.0	80
428	Hydrogen diffusivity in boron-doped polycrystalline Ni3Al. Scripta Metallurgica Et Materialia, 1994, 31, 677-681.	1.0	36
429	Ordered intermetallic alloys, part I: Nickel and iron aluminides. Jom, 1993, 45, 38-44.	1.9	81
430	Ordered intermetallic alloys, part II: Silicides, trialuminides, and others. Jom, 1993, 45, 28-34.	1.9	51
431	Recrystallization and grain growth in Ni3Al with and without boron. Intermetallics, 1993, 1, 217-225.	3.9	19
432	Intrinsic ductility and environmental embrittlement of binary Ni3Al. Scripta Metallurgica Et Materialia, 1993, 28, 857-862.	1.0	126

#	Article	IF	CITATIONS
433	Reactive sintering of Ni3Al under compression. Acta Metallurgica Et Materialia, 1993, 41, 113-120.	1.8	70
434	Correlation of the hardness and vacancy concentration in FeAl. Intermetallics, 1993, 1, 107-115.	3.9	242
435	Environmental embrittlement and grain-boundary fracture in Ni3Al. Scripta Metallurgica Et Materialia, 1992, 27, 25-28.	1.0	158
436	Crack nucleation in hydrogen embrittlement. Scripta Metallurgica Et Materialia, 1992, 27, 1701-1705.	1.0	30
437	Cracking behavior of FeAl (40 at % Al) alloys during cutting operations. Scripta Metallurgica Et Materialia, 1992, 26, 1669-1674.	1.0	8
438	Environmental embrittlement in Ll2-ordered (Co, Fe)3 V alloys. Acta Metallurgica Et Materialia, 1992, 40, 723-731.	1.8	37
439	Environmental effect on mechanical properties of L12-ordered (Fe22Co78)3V. Scripta Metallurgica Et Materialia, 1992, 26, 1753-1758.	1.0	12
440	Environmental embrittlement: The major cause of room-temperature brittleness in polycrystalline Ni3Al. Scripta Metallurgica Et Materialia, 1992, 27, 365-370.	1.0	134
441	Room-temperature environmental embrittlement in a TiAl alloy. Scripta Metallurgica Et Materialia, 1992, 27, 599-603.	1.0	83
442	The role of boron in suppressing environmental embrittlement in L12-Ordered (Co,Fe)3V. Scripta Metallurgica Et Materialia, 1992, 27, 1313-1317.	1.0	6
443	Effects of alloy stoichiometry on environmental embrittlement in Ll2-ordered (Co,Fe)3V alloys. Scripta Metallurgica Et Materialia, 1992, 27, 1307-1311.	1.0	12
444	Reaction sintering of Ni3Al to near full density. Scripta Metallurgica Et Materialia, 1992, 26, 381-385.	1.0	28
445	Effects of minor alloying elements on the welding behavior of FeAl alloys for structural and weld-overlay cladding applications. Scripta Metallurgica Et Materialia, 1992, 27, 1835-1840.	1.0	35
446	Effects of test environment and grain size on the tensile properties of L12-ordered (Co,Fe)3 V alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 152, 146-152.	5.6	8
447	Environmental embrittlement and grain-boundary fracture in Ni3Si. Scripta Metallurgica Et Materialia, 1991, 25, 1933-1937.	1.0	76
448	Intergranular fracture and boron effects in Ni3Al and other intermetallics — Introductory paper. Scripta Metallurgica Et Materialia, 1991, 25, 1231-1236.	1.0	72
449	The effect of boron doping on the hall-petch slope of FeAl (40 at. % Al). Scripta Metallurgica Et Materialia, 1991, 25, 2757-2761.	1.0	14
450	Environmental embrittlement in Ll2-ordered (Fe,Co)3V. Scripta Metallurgica Et Materialia, 1991, 25, 791-794.	1.0	28

#	Article	IF	CITATIONS
451	Microstructure and mechanical properties of Laves-phase alloys based on Cr2Nb. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 132, 61-66.	5.6	166
452	Microstructures and mechanical properties of NiAl–Ni ₂ AlHf alloys. Journal of Materials Research, 1990, 5, 1189-1196.	2.6	48
453	Environmental embrittlement in boron-free and boron-doped FeAl (40 at. % Al) alloys. Scripta Metallurgica Et Materialia, 1990, 24, 1285-1290.	1.0	215
454	Chromium addition and environmental embrittlement in Fe3Al. Scripta Metallurgica Et Materialia, 1990, 24, 2119-2122.	1.0	129
455	Does a grain boundary phase exist in Ni-24% Al? Summary of recent experimental work. Scripta Metallurgica Et Materialia, 1990, 24, 1251-1256.	1.0	27
456	Environmental embrittlement in ordered Ni3Fe?. Scripta Metallurgica Et Materialia, 1990, 24, 1583-1586.	1.0	26
457	Environmental effects on room-temperature ductility and fracture in Fe3Al. Scripta Metallurgica Et Materialia, 1990, 24, 385-389.	1.0	258
458	Effect of grain shape on environmental embrittlement in Ni3Al tested at elevated temperatures. Journal of Materials Research, 1989, 4, 294-299.	2.6	19
459	Grain-boundary contamination and ductility loss in boron-doped Ni3Al. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 2017-2023.	1.4	13
460	Interface characterization of fiber-reinforced Ni3Al matrix composites. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 2459-2469.	1.4	46
461	Effect of preoxidation and grain size on ductility of a boron-doped Ni3Al at elevated temperatures. Acta Metallurgica, 1989, 37, 2681-2688.	2.1	23
462	Development of Nickel aluminide matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 107, 81-91.	5.6	60
463	An environmental effect as the major cause for room-temperature embrittlement in FeAl. Scripta Metallurgica, 1989, 23, 875-880.	1.2	464
464	Comparison of grain boundary compositions in B-doped and B-free Ni3Al. Scripta Metallurgica, 1989, 23, 979-982.	1.2	62
465	Surface oxidation and ductility loss in boron-doped Ni3Al at 760°C. Scripta Metallurgica, 1989, 23, 727-731.	1.2	10
466	Effect of chromium on properties of Fe ₃ Al. Journal of Materials Research, 1989, 4, 1156-1163.	2.6	216
467	Micromechanisms of yield and flow in ordered intermetallic alloys. Acta Metallurgica, 1988, 36, 2935-2946.	2.1	87
468	Effects of grain size and test temperature on ductility and fracture behavior of A B-doped Ni3Al alloy. Acta Metallurgica, 1988, 36, 1241-1249.	2.1	57

#	Article	IF	CITATIONS
469	Effect of chromium on early stages of oxidation of Ni3Al alloys at 600�C. Oxidation of Metals, 1988, 29, 347-365.	2.1	34
470	Hardening behavior of nickel beryllides. Scripta Metallurgica, 1988, 22, 1409-1413.	1.2	10
471	Effect of chromium on room temperature ductility and fracture mode in Fe3Al. Scripta Metallurgica, 1988, 22, 1679-1681.	1.2	131
472	Effect of grain size on yield strength of Ni ₃ Al and other alloys. Journal of Materials Research, 1988, 3, 665-674.	2.6	33
473	Load relaxation studies of grain boundary effects in two Ni3Al alloys at elevated temperatures. Scripta Metallurgica, 1987, 21, 1675-1680.	1.2	6
474	Low-temperature specific heat of (Co78Fe22)3V. Journal of the Less Common Metals, 1987, 133, 209-214.	0.8	0
475	Dynamic embrittlement of boron-doped Ni3Al alloys at 600°C. Acta Metallurgica, 1987, 35, 643-649.	2.1	162
476	Microstructures and mechanical properties of Ni3Al alloyed with iron additions. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1987, 18, 1265-1277.	1.4	57
477	Effects of testing environment on the elevated temperature ductility of boron-doped Ni3Al. Scripta Metallurgica, 1986, 20, 1613-1618.	1.2	42
478	Anisotropic antiphase boundaries in rapidly solidified Ni3Al. Acta Metallurgica, 1985, 33, 2191-2198.	2.1	57
479	Effect of boron on grain-boundaries in Ni3Alâ€. Acta Metallurgica, 1985, 33, 213-229.	2.1	992
480	Effect of test environment on ductility and fracture behavior of boron-doped Ni3Al at 600° C. Scripta Metallurgica, 1985, 19, 1247-1250.	1.2	63
481	Boron segregation at grain boundaries in rapidly solidified Ni3Al. Scripta Metallurgica, 1985, 19, 963-966.	1.2	17
482	Application of heavy-ion-induced X-ray satellite emission to alloys. Journal of Physics F: Metal Physics, 1984, 14, L37-L41.	1.6	6
483	Physical metallurgy and mechanical properties of ductile ordered alloys (Fe, Co, Ni)3 V. International Metals Reviews, 1984, 29, 168-194.	0.3	24
484	Surface and grain boundary segregation in relation to intergranular fracture: Boron and sulfur in Ni3Al. Scripta Metallurgica, 1984, 18, 1417-1420.	1.2	149
485	Ductile Ordered Intermetallic Alloys. Science, 1984, 226, 636-642.	12.6	286
486	Design of Ductile Polycrystalline Ni ₃ Al Alloys. Materials Research Society Symposia Proceedings, 1984, 39, 365.	0.1	25

#	Article	IF	CITATIONS
487	Physical metallurgy and mechanical properties of ductile ordered alloys (Fe, Co, Ni)3 V. International Materials Reviews, 1984, 29, 168-194.	19.3	76
488	Weld Metal Grain Structure and Mechanical Properties of a Th-Doped Ir-0.3 Pct W Alloy (DOP-26). Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 1043-1053.	1.4	5
489	Outward diffusion and external oxidation of thorium in iridium alloys. Acta Metallurgica, 1981, 29, 301-310.	2.1	11
490	Development of iron-base long-range ordered (LRO) alloys for fusion reactor first wall and blanket applications. Journal of Nuclear Materials, 1981, 104, 1205-1209.	2.7	8
491	Development of ductile long-range ordered alloys for fusion reactor systems. Journal of Nuclear Materials, 1979, 85-86, 907-911.	2.7	25
492	Control of ordered structure and ductility of (Fe, Co, Ni)3V alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1979, 10, 1515-1525.	1.4	82
493	Effect of oxygen absorption on lattice parameter and specimen dilation in a tantalum- base alloy containing 8 Pct tungsten and 2 Pct hafnium. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1978, 9, 973-978.	1.4	3
494	The effect of phosphorus segregation to grain boundaries in Ir + 0.3 wt % W alloys on high temperature ductility. Scripta Metallurgica, 1978, 12, 727-733.	1.2	11
495	Surface reaction controlled oxygen absorption in a Ta-8 W-2 Hf alloy: kinetics and concentration gradients. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1975, 6, 2235.	1.4	1
496	Oxygen distribution in internally-oxidized Ta-8 pct W-2 pct Hf alloy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1975, 6, 419.	1.4	13
497	The mechanical properties of two uranium alloys and their role in the oxidation of the alloys. Oxidation of Metals, 1973, 6, 123-143.	2.1	10
498	Structure and mechanical properties of internally oxidized Ta-8 Pct W-2 Pct Hf (T-111) alloy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1973, 4, 1839-1850.	1.4	19
499	Atomic ordering and structural transformation in the V-Co-Ni ternary alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1973, 4, 1743-1753.	1.4	35
500	Nearest neighbor pair models for solutions. Scripta Metallurgica, 1973, 7, 281-288.	1.2	3
501	Reply to comment on some calculations of vacancy characteristics in substitutional alloys. Scripta Metallurgica, 1972, 6, 565-566.	1.2	2
502	Transition morphology during HCP precipitation from beta-isomorphous alloys. Scripta Metallurgica, 1971, 5, 255-257.	1.2	7
503	A simple method of determination of the distribution and solubility limit of interstitials in substitutional solid solutions. Journal of the Less Common Metals, 1971, 25, 123-129.	0.8	5
504	Phase relations in concentrated Ta-Hf and Nb-Hf alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1971, 2, 125-131.	1.4	27

#	Article	IF	CITATIONS
505	Vacancies in ternary alloys. Acta Metallurgica, 1971, 19, 617-620.	2.1	8