
Mark A Atwater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1383703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-stage pore development in Ag foams by the reduction of Ag2O and CuO mixtures. Materials and Design, 2020, 186, 108273.	7.0	2
2	Binder jetting additive manufacturing of copper foam structures. Additive Manufacturing, 2020, 32, 100960.	3.0	25
3	Multifunctional porous catalyst produced by mechanical alloying. Materials Research Letters, 2019, 7, 131-136.	8.7	6
4	Enhanced Performance of Bimetallic Co-Pd Catalysts Prepared by Mechanical Alloying. Metals, 2019, 9, 335.	2.3	3
5	Effect of B on the thermal stabilization of cryomilled nanocrystalline Cu–Al alloy. Materialia, 2019, 5, 100253.	2.7	13
6	Reconsidering functional powder metallurgy with intraparticle porosity. Metal Powder Report, 2019, 74, 251-254.	0.1	2
7	In-Situ Formation of Carbon Nanofiber Hybrid Architectures for Functional Devices. MRS Advances, 2019, 4, 1869-1875.	0.9	0
8	Solid State Porous Metal Production: A Review of the Capabilities, Characteristics, and Challenges. Advanced Engineering Materials, 2018, 20, 1700766.	3.5	68
9	Parametric Effects of Mechanical Alloying on Carbon Nanofiber Catalyst Production in the Ni-Cu System. Metals, 2018, 8, 286.	2.3	7
10	Solid State Foaming of Nickel, Monel, and Copper by the Reduction and Expansion of NiO and CuO Dispersions. Advanced Engineering Materials, 2018, 20, 1800302.	3.5	6
11	A thermodynamic and kinetic-based grain growth model for nanocrystalline materials: Parameter sensitivity analysis and model extension. Computational Materials Science, 2017, 131, 250-265.	3.0	1
12	Multiscale design of nanofibrous carbon aerogels: Synthesis, properties and comparisons with other low-density carbon materials. Carbon, 2017, 124, 588-598.	10.3	5
13	Getting more porosity from powder metal foams through intraparticle expansion. Metal Powder Report, 2017, 72, 392-396.	0.1	3
14	Advancing commercial feasibility of intraparticle expansion for solid state metal foams by the surface oxidation and room temperature ball milling of copper. Journal of Alloys and Compounds, 2017, 724, 258-266.	5.5	9
15	Effects of milling time on the development of porosity in Cu by the reduction of CuO. AIMS Materials Science, 2017, 4, 939-955.	1.4	4
16	Direct Synthesis of Nanofibrous Nonwoven Carbon Components: Initial Observations, Capabilities, and Challenges. Journal of Micro and Nano-Manufacturing, 2016, 4, .	0.7	1
17	Solidâ€State Foaming by Oxide Reduction and Expansion: Tailoring the Foamed Metal Microstructure in the Cu–CuO System with Oxide Content and Annealing Conditions. Advanced Engineering Materials, 2016, 18, 83-95.	3.5	16
18	Direct Synthesis of Nanofibrous Nonwoven Carbon Components: Initial Observations, Capabilities and Challenges. , 2016, , .		0

Mark A Atwater

#	Article	IF	CITATIONS
19	Synthesis, characterization and quantitative analysis of porous metal microstructures: Application to microporous copper produced by solid state foaming. AIMS Materials Science, 2016, 3, 573-590.	1.4	10
20	Using Mechanical Alloying to Create Bimetallic Catalysts for Vapor-Phase Carbon Nanofiber Synthesis. Fibers, 2015, 3, 394-410.	4.0	6
21	Mechanical and Electrical Characterization of Entangled Networks of Carbon Nanofibers. Materials, 2014, 7, 4845-4853.	2.9	13
22	Towards Reaching the Theoretical Limit of Porosity in Solid State Metal Foams: Intraparticle Expansion as A Primary and Additive Means to Create Porosity. Advanced Engineering Materials, 2014, 16, 190-195.	3.5	17
23	Thermal Stability of Nanocrystalline Copper Alloyed with Antimony. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5611-5616.	2.2	8
24	The thermal stability of nanocrystalline cartridge brass and the effect of zirconium additions. Journal of Materials Science, 2013, 48, 220-226.	3.7	16
25	Direct synthesis and characterization of a nonwoven structure comprised of carbon nanofibers. Carbon, 2013, 57, 363-370.	10.3	19
26	Studies on thermal stability, mechanical and electrical properties of nano crystalline Cu99.5Zr0.5 alloy. Journal of Alloys and Compounds, 2013, 558, 44-49.	5.5	18
27	The stabilization of nanocrystalline copper by zirconium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 250-256.	5.6	84
28	The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 226-233.	5.6	71
29	Deformation twins and related softening behavior in nanocrystalline Cu–30% Zn alloy. Acta Materialia, 2012, 60, 3340-3349.	7.9	53
30	Accelerated growth of carbon nanofibers using physical mixtures and alloys of Pd and Co in an ethylene–hydrogen environment. Carbon, 2011, 49, 1058-1066.	10.3	7
31	The effect of powder sintering on the palladium-catalyzed formation of carbon nanofibers from ethylene–oxygen mixtures. Carbon, 2010, 48, 1932-1938.	10.3	15
32	Formation of Carbon Nanofibers and Thin Films Catalyzed by Palladium in Ethyleneâ^'Hydrogen Mixtures. Journal of Physical Chemistry C, 2010, 114, 5804-5810.	3.1	12
33	The production of carbon nanofibers and thin films on palladium catalysts from ethylene–oxygen mixtures. Carbon, 2009, 47, 2269-2280.	10.3	18
34	Controlling carbon nanofibre morphology for improved composite reinforcement. International Journal of Materials and Structural Integrity, 2009, 3, 179.	0.1	7
35	Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 2007, 58, 3-7.	5.0	1,146
36	A Study on Gold Nanoparticle Synthesis Using Oleylamine as Both Reducing Agent and Protecting Ligand. Journal of Nanoscience and Nanotechnology, 2007, 7, 3126-3133.	0.9	70