Eric Quarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1383360/publications.pdf

Version: 2024-02-01

59	1,765	18	42
papers	citations	h-index	g-index
61	61	61	2142
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Influence of Polymorphism on the Electrochemical Behavior of Dilithium (2,3-Dilithium-oxy)-terephthalate vs. Li. Inorganics, 2022, 10, 62.	2.7	2
2	Revisiting the five-decade-old structure of the Fe ₂ WO ₆ powder with incommensurate modulations. CrystEngComm, 2021, 23, 7298-7304.	2.6	0
3	Investigating the Cycling Stability of Fe2WO6 Pseudocapacitive Electrode Materials. Nanomaterials, 2021, 11, 1405.	4.1	9
4	Toward the Coordination Fingerprint of the Edge-Sharing BO ₄ Tetrahedra. Inorganic Chemistry, 2021, 60, 2406-2413.	4.0	6
5	From partial to complete neutralization of 2,5-dihydroxyterephthalic acid in the Li–Na system: crystal chemistry and electrochemical behavior of Na ₂ Li ₂ C ₈ H ₂ O ₆ <i>vs.</i> Li. CrystEngComm, 2020, 22, 1653-1663.	2.6	3
6	Application of the cold sintering process to the electrolyte material BaCe0.8Zr0.1Y0.1O3-δ. Journal of the European Ceramic Society, 2020, 40, 3445-3452.	5.7	9
7	Tuning the Chemistry of Organonitrogen Compounds for Promoting Allâ€Organic Anionic Rechargeable Batteries. Angewandte Chemie - International Edition, 2019, 58, 15680-15684.	13.8	41
8	Tuning the Chemistry of Organonitrogen Compounds for Promoting Allâ€Organic Anionic Rechargeable Batteries. Angewandte Chemie, 2019, 131, 15827-15831.	2.0	12
9	High Performance Dense Proton Ceramic Electrolyte Material Obtained by Cold Sintering Process. ECS Transactions, 2019, 91, 983-996.	0.5	1
10	A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds. Chemical Science, 2019, 10, 418-426.	7.4	108
11	Full Organic Aqueous Battery Based on TEMPO Small Molecule with Millimeter-Thick Electrodes. Chemistry of Materials, 2019, 31, 1869-1880.	6.7	42
12	New KRb ₂ Sb ₄ BO ₁₃ and Rb ₃ Sb ₄ BO ₁₃ compounds prepared by Rb ⁺ /K ⁺ ion exchange from the K ₃ Sb ₄ BO ₁₃ ion conductor. CrystEngComm, 2019, 21, 594-601.	2.6	2
13	Ionic to Electronic Transport in Ba ₃ Ti ₃ O ₆ (BO ₃) ₂ under Reducing Atmosphere. ACS Applied Energy Materials, 2018, 1, 510-521.	5.1	7
14	Metal Atom Clusters as Building Blocks for Multifunctional Proton-Conducting Materials: Theoretical and Experimental Characterization. Inorganic Chemistry, 2018, 57, 9814-9825.	4.0	10
15	Influence of the autocombustion synthesis conditions and the calcination temperature on the microstructure and electrochemical properties of BaCe0.8Zr0.1Y0.1O3ⴴδ electrolyte material. Solid State Ionics, 2018, 325, 48-56.	2.7	5
16	K3Sb4O10(BO3): A solid state K-ion conductor. Solid State Ionics, 2018, 324, 260-266.	2.7	19
17	Influence of La2Mo2O9 on the sintering behavior and electrochemical properties of gadolinium-doped ceria. Ceramics International, 2017, 43, 10137-10143.	4.8	3
18	Investigating the crystal structures of alkali and alkaline-earth metal salts of 2,5-(dianilino)terephthalic acid. CrystEngComm, 2017, 19, 6787-6796.	2.6	5

#	Article	IF	CITATIONS
19	Oxygen Ion Transport and Effects of Doping in Ba ₃ Ti ₃ O ₆ (BO ₃) ₂ . Chemistry of Materials, 2017, 29, 6425-6433.	6.7	6
20	Solvation, exchange and electrochemical intercalation properties of disodium 2,5-(dianilino)terephthalate. CrystEngComm, 2016, 18, 6076-6082.	2.6	14
21	Location of deuterium sites at operating temperature from neutron diffraction of Baln _{0.6} Ti _{0.2} Yb _{0.2} O _{2.6â^'n} (OH) _{2n} , an electrolyte for proton-solid oxide fuel cells. Physical Chemistry Chemical Physics, 2016, 18, 15751-15759.	2.8	4
22	Reversible anion intercalation in a layered aromatic amine: a high-voltage host structure for organic batteries. Journal of Materials Chemistry A, 2016, 4, 6131-6139.	10.3	97
23	Innovative solid oxide fuel cells based on Baln0.3Ti0.7O2.85 electrolyte and La2Mo2O9 amorphous reduced phase as anode material. Journal of Power Sources, 2016, 302, 107-113.	7.8	12
24	Tailoring conductivity properties of chemically stable BaIn1â^'xâ^'yTixZryO2.5+(x+y)/2â^'n(OH)2n electrolytes for proton conducting fuel cells. Solid State Ionics, 2014, 256, 76-82.	2.7	7
25	Optimization of SOFC anode/electrolyte assembly based on Baln0.3Ti0.7O2.85 (BIT07)/Ni-BIT07 using an interfacial anodic layer. Journal of Power Sources, 2014, 251, 66-74.	7.8	9
26	Optimization of the Lanthanum Tungstate/Pr ₂ NiO ₄ Half Cell for Application in Proton Conducting Solid Oxide Fuel Cells. Fuel Cells, 2013, 13, 34-41.	2.4	18
27	Compatibility of proton conducting La6WO12 electrolyte with standard cathode materials. Solid State Ionics, 2012, 216, 19-24.	2.7	35
28	Rare earth effect on conductivity and stability properties of doped barium indates as potential proton-conducting fuel cell electrolytes. Solid State Ionics, 2012, 216, 11-14.	2.7	17
29	Electrochemical impedance measurements for evaluation of the different components of a complete solid oxide fuel cell associating La0.58Sr0.4Co0.2Fe0.8O3â°Î as cathode, BaIn0.3Ti0.7O2.85 as electrolyte and BaIn0.3Ti0.7O2.85–Ni cermet as anode. Journal of Power Sources, 2011, 196, 10576-10583.	7.8	6
30	Cathode materials for La0.995Ca0.005NbO4 proton ceramic electrolyte. International Journal of Hydrogen Energy, 2011, 36, 13059-13066.	7.1	18
31	Compatibility of La26O27(BO3)8 electrolyte with standard cathode materials for use in proton conducting solid oxide fuel cells. Journal of Power Sources, 2011, 196, 7435-7441.	7.8	10
32	Water incorporation and proton conductivity in titanium substituted barium indate. Journal of Power Sources, 2010, 195, 1136-1141.	7.8	53
33	Evaluation of Ba2(In0.8Ti0.2)2O5.2â^'n(OH)2n as a potential electrolyte material for proton-conducting solid oxide fuel cell. Journal of Power Sources, 2010, 195, 4923-4927.	7.8	14
34	Structural investigation of composite phases Ba1 + x [(NaxMn1 $\hat{a} \in x$)O3] with x approx. 2/7, 5/17 and 1/3; exotic Mn4.5+ valence. Zeitschrift Fýr Kristallographie, 2010, 225, 1-11.	1.1	2
35	Crystal structures and sodium/silver distributions within the ionic conductors Na ₅ Ag ₂ Fe ₃ (As ₂ O ₇) ₄ and Na ₂ Ag ₅ Fe ₃ (P ₂ O ₇) ₄ . New Iournal of Chemistry, 2010, 34, 287-293.	2.8	9
36	BITX: New Electrolyte for Oxide Ion and Proton SOFC. ECS Transactions, 2009, 25, 1801-1808.	0.5	0

#	Article	IF	CITATIONS
37	Water incorporation into the Ba2(In1â° xMx)2O5†(M=Sc3+ Oâ‰x<0.5 and M=Y3+ Oâ‰x<0.35) system a protonic conduction. Solid State Ionics, 2009, 180, 1157-1163.	ind 2.7	17
38	Crystal structures of new silver ion conductors Ag7Fe3(X2O7)4 ($X = P$, As). New Journal of Chemistry, 2009, 33, 998.	2.8	19
39	Nanostructured Thermoelectric Materials and High-Efficiency Power-Generation Modules. Journal of Electronic Materials, 2007, 36, 704-710.	2.2	52
40	Coexistence of Large Thermopower and Degenerate Doping in the Nanostructured Material Ago.85SnSb1.15Te3. Chemistry of Materials, 2006, 18, 4719-4721.	6.7	42
41	Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sciences, 2006, 8, 1215-1221.	3.2	176
42	Progress on the Fabrication and Characterization of High Efficiency Thermoelectric Generators. Materials Research Society Symposia Proceedings, 2005, 886, 1.	0.1	1
43	{Sn[Zn4Sn4S17]}6â^: A Robust Open Framework Based on Metal-Linked Penta-Supertetrahedral [Zn4Sn4S17]10â^' Clusters with Ion-Exchange Properties. Angewandte Chemie - International Edition, 2005, 44, 3552-3555.	13.8	186
44	{Sn[Zn4Sn4S17]}6-: A Robust Open Framework Based on Metal-Linked Penta-Supertetrahedral [Zn4Sn4S17]10- Clusters with Ion-Exchange Properties ChemInform, 2005, 36, no.	0.0	0
45	Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m. The Myth of Solid Solutions ChemInform, 2005, 36, no.	0.0	2
46	Substitutions in the Homologous Family CsPbmBi3Te5+m and Preliminary Thermoelectric Results. Materials Research Society Symposia Proceedings, 2005, 886, 1.	0.1	1
47	Nanoscale clusters in the high performance thermoelectricAgPbmSbTem+2. Physical Review B, 2005, 72,	3.2	55
48	Nanostructuring, Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m. The Myth of Solid Solutions. Journal of the American Chemical Society, 2005, 127, 9177-9190.	13.7	342
49	Crystal structure of the mixed Mn4+/Mn5+ 2H-perovskite-type Ba4Mn2NaO9 oxide. Solid State Sciences, 2004, 6, 931-938.	3.2	15
50	Electrosynthesis and crystal structure of the new 15R hexagonal perovskite Ba5MnNa2V2O13. Journal of Solid State Chemistry, 2004, 177, 1416-1424.	2.9	13
51	Synthesis, Crystal Structure and Characterization of New 12H Hexagonal Perovskite-Related Oxides Ba6M2Na2X2O17 (M: Ru, Nb, Ta, Sb; X: V, Cr, Mn, P, As). ChemInform, 2004, 35, no.	0.0	0
52	Crystal Structure of the Mixed Mn4+/Mn5+ 2H-Perovskite-Type Ba4Mn2NaO9 Oxide ChemInform, 2004, 35, no.	0.0	0
53	Resonant States in the Electronic Structure of the High Performance ThermoelectricsAgPbmSbTe2+m: The Role of Ag-Sb Microstructures. Physical Review Letters, 2004, 93, 146403.	7.8	152
54	From the mixed valent 6H-Ba3Ru5.5+2NaO9 to the 6H-Ba3(Ru1.69C0.31)(NaO.95RuO.05)O8.69 oxycarbonate compound. Solid State Sciences, 2003, 5, 951-963.	3.2	22

#	Article	IF	CITATIONS
55	Electrosynthesis, structural transitions and characterization of the new 10H-Ba5Ru3Na2O14. Solid State Sciences, 2003, 5, 1105-1116.	3.2	11
56	Electrosynthesis, Structural Transitions and Characterization of the New 10H-Ba5Ru3Na2O14 ChemInform, 2003, 34, no.	0.0	0
57	Synthesis, crystal structure and characterization of new 12H hexagonal perovskite-related oxides Ba6M2Na2X2O17 (M=Ru, Nb, Ta, Sb; X=V, Cr, Mn, P, As). Journal of Solid State Chemistry, 2003, 176, 137-150.	2.9	32
58	Hall Effect Measurements on New Thermoelectric Materials. Materials Research Society Symposia Proceedings, 2003, 793, 344.	0.1	1
59	Polysynthetic Twinning Characterization and Crystallographic Refinement in NaBa2M2+2M3+O6 (M=Ni,) Tj ETQc	1 _{2.9} 0.784	 314 rgBT