Rosa Rodriguez-SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1382907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can a paid model for peer review be sustainable when the author can decide whether to pay or not?. Scientometrics, 2022, 127, 1491-1514.	1.6	10
2	Quality censoring in peer review. Scientometrics, 2021, 126, 825-830.	1.6	1
3	The interplay between the reviewer's incentives and the journal's quality standard. Scientometrics, 2021, 126, 3041-3061.	1.6	7
4	The editor-manuscript game. Scientometrics, 2021, 126, 4277-4295.	1.6	4
5	The author–reviewer game. Scientometrics, 2020, 124, 2409-2431.	1.6	14
6	Confirmatory bias in peer review. Scientometrics, 2020, 123, 517-533.	1.6	16
7	An evolutionary explanation of assassins and zealots in peer review. Scientometrics, 2019, 120, 1373-1385.	1.6	4
8	The optimal amount of information to provide in an academic manuscript. Scientometrics, 2019, 121, 1685-1705.	1.6	5
9	The author's ignorance on the publication fees is a source of power for publishers. Scientometrics, 2019, 121, 1435-1445.	1.6	1
10	Do the best papers have the highest probability of being cited?. Scientometrics, 2019, 118, 885-890.	1.6	5
11	The Game Between a Biased Reviewer and His Editor. Science and Engineering Ethics, 2019, 25, 265-283.	1.7	11
12	Competition between academic journals for scholars' attention: the â€~Nature effect' in scholarly communication. Scientometrics, 2018, 115, 1413-1432.	1.6	11
13	Editorial decisions with informed and uninformed reviewers. Scientometrics, 2018, 117, 25-43.	1.6	2
14	STRATEGY: a tool for the formulation of peer-review strategies. Scientometrics, 2017, 113, 45-60.	1.6	3
15	Problems with open participation in peer review. Scientometrics, 2017, 112, 1881-1885.	1.6	1
16	Authors and reviewers who suffer from confirmatory bias. Scientometrics, 2016, 109, 1377-1395.	1.6	11
17	Why the referees' reports I receive as an editor are so much better than the reports I receive as an author?. Scientometrics, 2016, 106, 967-986.	1.6	7
18	Evolutionary games between authors and their editors. Applied Mathematics and Computation, 2016, 273, 645-655.	1.4	5

Rosa Rodriguez-SÃinchez

#	Article	IF	CITATIONS
19	Bias and effort in peer review. Journal of the Association for Information Science and Technology, 2015, 66, 2020-2030.	1.5	14
20	Adverse selection of reviewers. Journal of the Association for Information Science and Technology, 2015, 66, 1252-1262.	1.5	10
21	The principalâ€agent problem in peer review. Journal of the Association for Information Science and Technology, 2015, 66, 297-308.	1.5	15
22	The author–editor game. Scientometrics, 2015, 104, 361-380.	1.6	27
23	Social impact of scholarly articles in a citation network. Journal of the Association for Information Science and Technology, 2015, 66, 117-127.	1.5	3
24	Best-in-class and strategic benchmarking of scientific subject categories of Web of Science in 2010. Scientometrics, 2014, 99, 615-630.	1.6	1
25	A web application for aggregating conflicting reviewers' preferences. Scientometrics, 2014, 99, 523-539.	1.6	1
26	Evolutionary games between subject categories. Scientometrics, 2014, 101, 869-888.	1.6	2
27	How the same organizational structures can arise across seemingly unrelated domains of human activities: the example of academic publishing and stock market. Scientometrics, 2014, 99, 447-461.	1.6	0
28	The selection of high-quality manuscripts. Scientometrics, 2014, 98, 299-313.	1.6	4
29	Image inpainting with nonsubsampled contourlet transform. Pattern Recognition Letters, 2013, 34, 1508-1518.	2.6	7
30	Mapping citation patterns of book chapters in the Book Citation Index. Journal of Informetrics, 2013, 7, 412-424.	1.4	31
31	Benchmarking research performance at the university level with information theoretic measures. Scientometrics, 2013, 95, 435-452.	1.6	6
32	Análisis de redes de las universidades españolas de acuerdo a su perfil de publicación en revistas por áreas cientÃficas. Revista Espanola De Documentacion Cientifica, 2013, 36, e027.	0.1	9
33	Visual efficiency of image fusion methods. International Journal of Image and Data Fusion, 2012, 3, 39-69.	0.8	6
34	A comparison of top economics departments in the US and EU on the basis of the multidimensional prestige of influential articles in 2010. Scientometrics, 2012, 93, 681-698.	1.6	7
35	Ranking of research output of universities on the basis of the multidimensional prestige of influential fields: Spanish universities as a case of study. Scientometrics, 2012, 93, 1081-1099.	1.6	11
36	Mapping academic institutions according to their journal publication profile: Spanish universities as a case study. Journal of the Association for Information Science and Technology, 2012, 63, 2328-2340.	2.6	22

#	Article	IF	CITATIONS
37	Scientific subject categories of Web of Knowledge ranked according to their multidimensional prestige of influential journals. Journal of the Association for Information Science and Technology, 2012, 63, 1017-1029.	2.6	6
38	Analysis of coding risks in progressive transmission. Signal Processing: Image Communication, 2012, 27, 39-53.	1.8	0
39	Sustainable image transmission. Journal of Visual Communication and Image Representation, 2012, 23, 134-142.	1.7	Ο
40	On first quartile journals which are not of highest impact. Scientometrics, 2012, 90, 925-943.	1.6	30
41	From computational attention to image fusion. Pattern Recognition Letters, 2011, 32, 1778-1795.	2.6	3
42	Comparative visibility analysis of advertisement images. Signal Processing: Image Communication, 2011, 26, 589-611.	1.8	1
43	Overall prestige of journals with ranking score above a given threshold. Scientometrics, 2011, 89, 229-243.	1.6	9
44	Ranking of the subject areas of Scopus. Journal of the Association for Information Science and Technology, 2011, 62, 2013-2023.	2.6	20
45	Axiomatic approach to computational attention. Pattern Recognition, 2010, 43, 1618-1630.	5.1	6
46	Information visibility using transmission methods. Pattern Recognition Letters, 2010, 31, 609-618.	2.6	3
47	Relevance of knowledge from bit-saving in progressive transmission. Journal of Visual Communication and Image Representation, 2010, 21, 741-750.	1.7	О
48	A critical examination of the assumptions used in dynamic allocation. Journal of Visual Communication and Image Representation, 2009, 20, 351-363.	1.7	1
49	Using graphics: motivating students in a C++ programming introductory course. , 2009, , .		1
50	Steady growth of encoding efficiency in progressive transmission. Optical Engineering, 2008, 47, 047001.	0.5	2
51	Bit-saving path for progressive transmission. Optical Engineering, 2007, 46, 117001.	0.5	2
52	Automatic and optimal hierarchical quantizer decomposition to build knowledge for video transmission. Optical Engineering, 2007, 46, 107402.	0.5	0
53	Optimal exploratory effort to build knowledge for video transmission. Optical Engineering, 2007, 46, 047401.	0.5	4
54	Dynamics of low-cost transmission on the optimal path. Optical Engineering, 2007, 46, 030503.	0.5	6

#	Article	IF	CITATIONS
55	Emergence of region-based transmission when computation is unconstrained. Journal of Visual Communication and Image Representation, 2006, 17, 1024-1039.	1.7	1
56	Theory of bit allocation analysis. Optical Engineering, 2006, 45, 127401.	0.5	2
57	Power of a wavelet coefficient in progressive image transmission. Optical Engineering, 2005, 44, 087004.	0.5	1
58	Justice in quantizer formation for rational progressive transmission. Optical Engineering, 2004, 43, 2105.	0.5	2
59	Embedded coder for providing better image quality at very low bit rates. Optical Engineering, 2004, 43, 615.	0.5	6
60	The relationship between information prioritization and visual distinctness in two progressive image transmission schemes. Pattern Recognition, 2004, 37, 281-297.	5.1	3
61	Progressive Image Transmission: The Role of Rationality, Cooperation, and Justice. , 2004, , .		9
62	Rate control optimization in embedded wavelet coding. Pattern Recognition Letters, 2003, 24, 1469-1487.	2.6	1
63	On the concept of best achievable compression ratio for lossy image coding. Pattern Recognition, 2003, 36, 2377-2394.	5.1	4
64	CORAL: collective rationality for the allocation of bits. Optical Engineering, 2003, 42, 1000.	0.5	2
65	Self-control of quantizer risk attitude in rational embedded wavelet image coding. Optical Engineering, 2003, 42, 3215.	0.5	3
66	Best Achievable Compression Ratio for Lossy Image Coding. Lecture Notes in Computer Science, 2003, , 263-270.	1.0	3
67	Rational systems exhibit moderate risk aversion with respect to "gambles―on variable-resolution compression. Optical Engineering, 2002, 41, 2216.	0.5	19
68	Coder selection for lossy compression of still images. Pattern Recognition, 2002, 35, 2489-2509.	5.1	0
69	Information theoretic measure for visual target distinctness. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23, 362-383.	9.7	42
70	Minimum error gain for predicting visual target distinctness. Optical Engineering, 2001, 40, 1794.	0.5	7
71	Integral opponent-colors features for computing visual target distinctness. Pattern Recognition, 2000, 33, 1179-1198.	5.1	2
72	Origins of illusory percepts in digital images. Pattern Recognition, 2000, 33, 2007-2017.	5.1	5

Rosa Rodriguez-SÃinchez

#	Article	IF	CITATIONS
73	Defining the notion of visual pattern for predicting visual target distinctness in a complex rural background. Optical Engineering, 2000, 39, 415.	0.5	5
74	The RGFF representational model: a system for the automatically learned partitioning of "visual patterns" in digital images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21, 1044-1073.	9.7	33
75	THE RGF PANDEMONIUM: A LOW-LEVEL REPRESENTATIONAL MODEL FOR IMAGES. Pattern Recognition, 1998, 31, 1797-1810.	5.1	3
76	The role of integral features for perceiving image discriminability. Pattern Recognition Letters, 1997, 18, 733-740.	2.6	10
77	Scale selection using three different representations for images. Pattern Recognition Letters, 1997, 18, 1453-1467.	2.6	4
78	How to define the notion of microcalcifications in digitized mammograms. , 0, , .		3
79	Performance of the Kullback-Leibler information gain for predicting image fidelity. , 0, , .		7
80	Optimized rate control in embedded wavelet coding. , 0, , .		0
81	Benefits of Cooperative Peer Review. SSRN Electronic Journal, 0, , .	0.4	1