Clara Silvestre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1382691/publications.pdf

Version: 2024-02-01

270111 198040 2,787 63 25 52 citations h-index g-index papers 68 68 68 3341 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent advances in polymers and polymer composites for food packaging. Materials Today, 2022, 53, 134-161.	8.3	84
2	Application of Polypropylene-Based Nanocomposite Films for Sliced Turkish Pastrami under Vacuum/Modified Atmosphere Packaging: A Pilot Study. Coatings, 2020, 10, 1125.	1.2	1
3	Essential Nanostructure Parameters to Govern Reinforcement and Functionality of Poly(lactic) Acid Nanocomposites with Graphene and Carbon Nanotubes for 3D Printing Application. Polymers, 2020, 12, 1208.	2.0	12
4	Effects of Filament Extrusion, 3D Printing and Hot-Pressing on Electrical and Tensile Properties of Poly(Lactic) Acid Composites Filled with Carbon Nanotubes and Graphene. Nanomaterials, 2020, 10, 35.	1.9	46
5	Composition dependence in surface properties of poly(lactic acid)/graphene/carbon nanotube composites. Materials Chemistry and Physics, 2020, 249, 122702.	2.0	7
6	Rheological and electrical behaviour of nanocarbon/poly(lactic) acid for 3D printing applications. Composites Part B: Engineering, 2019, 167, 467-476.	5.9	58
7	PLA/Graphene/MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications. Applied Sciences (Switzerland), 2019, 9, 1209.	1.3	129
8	Selective Laser Sintering Fabricated Thermoplastic Polyurethane/Graphene Cellular Structures with Tailorable Properties and High Strain Sensitivity. Applied Sciences (Switzerland), 2019, 9, 864.	1.3	45
9	Study on Aging and Recover of Poly (Lactic) Acid Composite Films with Graphene and Carbon Nanotubes Produced by Solution Blending and Extrusion. Coatings, 2019, 9, 359.	1.2	11
10	Nanoindentation analysis of 3D printed poly(lactic acid)â€based composites reinforced with graphene and multiwall carbon nanotubes. Journal of Applied Polymer Science, 2019, 136, 47260.	1.3	27
11	Morphological, Rheological and Electromagnetic Properties of Nanocarbon/Poly(lactic) Acid for 3D Printing: Solution Blending vs. Melt Mixing. Materials, 2018, 11, 2256.	1.3	37
12	Morphological, rheological and electrical study of PLA reinforced with carbon-based fillers for 3D printing applications. AIP Conference Proceedings, 2018, , .	0.3	5
13	Carbon-Coated Nickel Nanoparticles: Effect on the Magnetic and Electric Properties of Composite Materials. Coatings, 2018, 8, 165.	1.2	7
14	Quiescent and shear-induced non-isothermal crystallization of isotactic polypropylene-based nanocomposites. Polymer Bulletin, 2017, 74, 145-165.	1.7	5
15	Preparation and characterization of nanocomposites based on PLA and TiO2 nanoparticles functionalized with fluorocarbons. Polymer Bulletin, 2017, 74, 3027-3041.	1.7	15
16	Effects of PP-based Nanopackaging on the Overall Quality and Shelf Life of Ready-to-eat Salami. Packaging Technology and Science, 2017, 30, 663-679.	1.3	8
17	Assessment on the Effects of ZnO and Coated ZnO Particles on iPP and PLA Properties for Application in Food Packaging. Coatings, 2017, 7, 29.	1.2	21
18	Effect of TiO2 and ZnO on PLA degradation in various media. Advanced Material Science, 2017, 2, .	0.3	19

#	Article	IF	Citations
19	Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging. Coatings, 2016, 6, 4.	1.2	26
20	Effect of electron beam irradiation on the properties of polylactic acid/montmorillonite nanocomposites for food packaging applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	24
21	Rheology, crystallization behavior, and dielectric study on molecular dynamics of polypropylene composites with multiwalled carbon nanotubes and clay. Polymer Composites, 2016, 37, 2756-2769.	2.3	7
22	Polylactic acid/zinc oxide biocomposite films for food packaging application. International Journal of Biological Macromolecules, 2016, 88, 254-262.	3.6	204
23	Hydrophobic silica nanoparticles as reinforcing filler for poly (lactic acid) polymer matrix. Hemijska Industrija, 2016, 70, 73-80.	0.3	38
24	Effect of PLA/ZnO Packaging and Gamma Radiation on the Content of Listeria innocua, Escherichia coli and Salmonella enterica on Ham during Storage at 4 \hat{A}° C. Journal of Food Science and Engineering, 2016, 6, .	0.1	0
25	Structure–property relationships in polyethylene based films obtained by blow molding as model system of industrial relevance. European Polymer Journal, 2015, 62, 97-107.	2.6	17
26	Biocompatible and Biodegradable Chitosan / Clay Nanocomposites as New Carriers for Theophylline Controlled Release. British Journal of Pharmaceutical Research, 2015, 6, 228-254.	0.4	9
27	Preparation and characterization of isotactic polypropylene/zinc oxide microcomposites with antibacterial activity. Polymer Journal, 2013, 45, 938-945.	1.3	40
28	Polymer Nanomaterials for Food Packaging:. , 2013, , 1-26.		1
29	Evolution of Rheology, Structure, andÂProperties around the Rheological Flocculation and Percolation Thresholds in Polymer Nanocomposites. , 2013, , 55-86.		3
30	Food packaging based on polymer nanomaterials. Progress in Polymer Science, 2011, 36, 1766-1782.	11.8	746
31	Effect of hydrocarbon resin on the morphology and mechanical properties of isotactic polypropylene/clay composites. Journal of Applied Polymer Science, 2011, 119, 1135-1143.	1.3	15
32	Polymer dynamics in epoxy/alumina nanocomposites studied by various techniques. Journal of Applied Polymer Science, 2011, 121, 3613-3627.	1.3	23
33	Isotactic polypropylene composites reinforced with multiwall carbon nanotubes, part 2: Thermal and mechanical properties related to the structure. Journal of Applied Polymer Science, 2010, 115, 3576-3585.	1.3	34
34	Viscoelastic properties and morphological characteristics of polymerâ€modified bitumen blends. Journal of Applied Polymer Science, 2010, 118, 1320-1330.	1.3	12
35	Evaluation of the Effectiveness of New Compatibilizers Based on EBAGMAâ€LDPE and EBAGMAâ€PET Masterbatches for LDPE/PET Blends. Macromolecular Materials and Engineering, 2010, 295, 222-232.	1.7	4
36	Coordination Action: NMP3-CA-2008-218331-NaPolyNet Setting up Research-Intensive Clusters across the EU on Characterization of Polymer Nanostructures. Solid State Phenomena, 2009, 151, 101-107.	0.3	0

#	Article	IF	CITATIONS
37	Melt Mixing of Ethylene/Butyl Acrylate/Glycidyl Methacrylate Terpolymers with LDPE and PET. Macromolecular Materials and Engineering, 2009, 294, 122-129.	1.7	17
38	Isotactic polypropylene modified with clay and hydrocarbon resin: Compatibility, structure and morphology in dependence on crystallization conditions. Applied Surface Science, 2009, 256, S40-S45.	3.1	18
39	Polymerization in magnetic field: XVIII. Influence of surfactant nature on the synthesis and thermal properties of poly(methyl methacrylate) and poly[(methyl methacrylate)â€∢i>co⟨ i>â€(epoxypropyl) Tj ETQq1 ☐	l 0 .7& 4314	rgBT /Overlo
40	Processing, thermal stability and morphology of chiral sensing syndiotactic polystyrene films. Journal of Materials Chemistry, 2008, 18, 567-572.	6.7	41
41	Isothermal Crystallization of Isotactic Poly(propylene) Studied by Superfast Calorimetry. Macromolecular Rapid Communications, 2007, 28, 875-881.	2.0	109
42	Structure and Properties of a Polypropylene Containing Random Ethylene Units Modified with a Hydrogenated Hydrocarbon Resin. Macromolecular Symposia, 2006, 234, 117-127.	0.4	5
43	Ethylene Butyl Acrylate Glycidyl Methacrylate Terpolymer as an Interfacial Agent for Isotactic Poly(propylene)/Wood Flour Composites. Macromolecular Materials and Engineering, 2006, 291, 869-876.	1.7	27
44	Structure and Morphology Development in Films of mLLDPE/LDPE Blends During Blowing. Macromolecular Materials and Engineering, 2006, 291, 1477-1485.	1.7	17
45	Effect of Clay/Diamond and Clay/Carbon Nanosystems on Structure-Properties Relationships of iPP. Macromolecular Symposia, 2005, 228, 99-114.	0.4	8
46	On the compatibility of low density polyethylene/hydrolyzed collagen blends. II: New compatibilizers. European Polymer Journal, 2005, 41, 1391-1402.	2.6	14
47	Waste and Virgin LDPE/PET Blends Compatibilized with an Ethylene-Butyl Acrylate-Glycidyl Methacrylate (EBAGMA) Terpolymer, 1. Macromolecular Materials and Engineering, 2005, 290, 987-995.	1.7	39
48	Influence of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on miscibility and properties of atactic poly(methyl methacrylate). Polymer International, 2004, 53, 809-814.	1.6	0
49	Measurement of spherulite growth rates using tailored temperature programs. Thermochimica Acta, 2003, 396, 67-73.	1.2	10
50	Morphology of a melt crystallized iPP/HDPE/hydrogenated hydrocarbon resin blend. Polymer, 2003, 44, 4273-4281.	1.8	14
51	Structure, morphology, and crystallization of a random ethylene-propylene copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 493-500.	2.4	37
52	Nonisothermal crystallization of isotactic polypropylene blended with poly(?-pinene). I. Bulk crystallization. Journal of Applied Polymer Science, 2001, 82, 358-367.	1.3	30
53	Nonisothermal Crystallization of Isotactic Polypropylene Blended with Poly(α-pinene). 2. Growth Rates. Macromolecules, 2000, 33, 3828-3832.	2.2	57
54	Phase diagram and thermal and mechanical properties of isotactic polypropylene/hydrogenated oligo(cyclopentadiene) blends. Macromolecular Symposia, 1994, 78, 115-129.	0.4	8

#	Article	IF	Citations
55	Miscibility of syndiotactic polystyrene/poly(vinyl methyl ether) blends. Polymer, 1993, 34, 214-217.	1.8	20
56	Morphology, phase structure and thermal behaviour of films of isotactic polypropylene/hydrogenated oligocyclopentadiene blends: 1. Extruded isotropic films. Polymer, 1991, 32, 3299-3304.	1.8	28
57	Syndiotactic polystyrene: crystallization and melting behaviour. Polymer, 1991, 32, 1080-1083.	1.8	94
58	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 2615-2625.	1.1	42
59	Poly(ethylene oxide)/poly(ethyl methacrylate) blends: Crystallization, melting behavior, and miscibility. Journal of Polymer Science, Part B: Polymer Physics, 1989, 27, 1781-1794.	2.4	67
60	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1988, 9, 261-265.	1.1	18
61	Properties of thin films of isotactic polypropylene blended with polyisobutylene and ethylene-propylene-diene terpolymer rubbers. Polymer, 1983, 24, 1458-1468.	1.8	79
62	Morphology, crystallization and melting behaviour of films of isotactic polypropylene blended with ethylene-propylene copolymers and polyisobutylene. Polymer, 1982, 23, 229-237.	1.8	209
63	Environmentally Degradable Materials Based On Multicomponent Polymeric Systems: Biocomposites And Bioblends., 0,, 512-529.		O