Yang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1382682/publications.pdf

Version: 2024-02-01

30	1,167 citations	15	477307 29 g-index
papers	citations	h-index	g-index
30	30	30	1478
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Novel Maize Homeodomain–Leucine Zipper (HD-Zip) I Gene, Zmhdz10, Positively Regulates Drought and Salt Tolerance in Both Rice and Arabidopsis. Plant and Cell Physiology, 2014, 55, 1142-1156.	3.1	171
2	The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta, 2017, 246, 1215-1231.	3.2	124
3	Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize. PLoS ONE, 2011, 6, e28488.	2.5	123
4	Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene, 2015, 566, 95-108.	2.2	109
5	Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell, Tissue and Organ Culture, 2014, 119, 565-577.	2.3	104
6	Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genetics and Molecular Biology, 2013, 36, 540-546.	1.3	82
7	Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell, Tissue and Organ Culture, 2011, 105, 159-173.	2.3	74
8	Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An'nong 591 under heat stress. BMC Plant Biology, 2019, 19, 273.	3.6	43
9	ldentification and characterization of NBS-encoding disease resistance genes in Lotus japonicus. Plant Systematics and Evolution, 2010, 289, 101-110.	0.9	42
10	Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves. International Journal of Molecular Sciences, 2021, 22, 6980.	4.1	36
11	Systematic Analysis of the Maize PHD-Finger Gene Family Reveals a Subfamily Involved in Abiotic Stress Response. International Journal of Molecular Sciences, 2015, 16, 23517-23544.	4.1	35
12	Genome-wide analysis of the IQD gene family in maize. Molecular Genetics and Genomics, 2016, 291, 543-558.	2.1	35
13	Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Molecular Biology, 2018, 98, 187-203.	3.9	23
14	A maize NAC transcription factor, ZmNAC34, negatively regulates starch synthesis in rice. Plant Cell Reports, 2019, 38, 1473-1484.	5.6	21
15	A novel GRAS transcription factor, ZmGRAS20, regulates starch biosynthesis in rice endosperm. Physiology and Molecular Biology of Plants, 2017, 23, 143-154.	3.1	18
16	Genome-wide association study of maize plant architecture using F1 populations. Plant Molecular Biology, 2019, 99, 1-15.	3.9	17
17	Genome-wide analysis of the maize superoxide dismutase (SOD) gene family reveals important roles in drought and salt responses. Genetics and Molecular Biology, 2021, 44, e20210035.	1.3	16
18	Identification and characterization of the RCI2 gene family in maize (Zea mays). Journal of Genetics, 2014, 93, 655-666.	0.7	15

#	Article	IF	CITATIONS
19	A maize stress-responsive Di19 transcription factor, ZmDi19-1, confers enhanced tolerance to salt in transgenic Arabidopsis. Plant Cell Reports, 2019, 38, 1563-1578.	5 . 6	14
20	Functional analysis of the HD-Zip I gene ZmHDZ1 in ABA-mediated salt tolerance in rice. Journal of Plant Biology, 2017, 60, 207-214.	2.1	13
21	Comparative genome analysis of the SPL gene family reveals novel evolutionary features in maize. Genetics and Molecular Biology, 2019, 42, 380-394.	1.3	13
22	Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels. BMC Plant Biology, 2020, 20, 206.	3.6	8
23	A Moso Bamboo Drought-Induced 19 Protein, PeDi19-4, Enhanced Drought and Salt Tolerance in Plants via the ABA-Dependent Signaling Pathway. Plant and Cell Physiology, 2019, 60, e1-e14.	3.1	7
24	Identification and characterization of heat-responsive IncRNAs in maize inbred line CM1. BMC Genomics, 2022, 23, 208.	2.8	6
25	Comparative Transcriptomics Reveals the Molecular Mechanism of the Parental Lines of Maize Hybrid An'nong876 in Response to Salt Stress. International Journal of Molecular Sciences, 2022, 23, 5231.	4.1	5
26	Significant Microsynteny with New Evolutionary Highlights Is Detected through Comparative Genomic Sequence Analysis of Maize CCCH IX Gene Subfamily. International Journal of Genomics, 2015, 2015, 1-12.	1.6	4
27	Systematic identification and characterization of candidate genes for the regulation of plant height in maize. Euphytica, 2019, 215, 1.	1.2	4
28	Identification and characterization of heat-responsive miRNAs and their regulatory network in maize. Plant Growth Regulation, 2022, 96, 195-208.	3.4	4
29	Transcriptome analysis reveals critical genes and key pathways involved in early phyllotaxy development in maize. Genes and Genomics, 2017, 39, 15-26.	1.4	1
30	Identification and Characterization of the Core Region of ZmDi19-5 Promoter Activity and Its Upstream Regulatory Proteins. International Journal of Molecular Sciences, 2022, 23, 7390.	4.1	0