Alexander von Gise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1382594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 2008, 454, 109-113.	13.7	905
2	Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 2013, 31, 898-907.	9.4	528
3	YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2394-2399.	3.3	475
4	Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. Journal of Clinical Investigation, 2011, 121, 1894-1904.	3.9	438
5	Endocardial and Epicardial Epithelial to Mesenchymal Transitions in Heart Development and Disease. Circulation Research, 2012, 110, 1628-1645.	2.0	344
6	Cardiac-Specific YAP Activation Improves Cardiac Function and Survival in an Experimental Murine MI Model. Circulation Research, 2014, 115, 354-363.	2.0	324
7	<i>Pi3kcb</i> Links Hippo-YAP and Pl3K-AKT Signaling Pathways to Promote Cardiomyocyte Proliferation and Survival. Circulation Research, 2015, 116, 35-45.	2.0	237
8	PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes and Development, 2012, 26, 37-42.	2.7	232
9	WT1 regulates epicardial epithelial to mesenchymal transition through β-catenin and retinoic acid signaling pathways. Developmental Biology, 2011, 356, 421-431.	0.9	208
10	Polycomb Repressive Complex 2 Regulates Normal Development of the Mouse Heart. Circulation Research, 2012, 110, 406-415.	2.0	188
11	Apoptosis Suppression by Raf-1 and MEK1 Requires MEK- and Phosphatidylinositol 3-Kinase-Dependent Signals. Molecular and Cellular Biology, 2001, 21, 2324-2336.	1.1	174
12	Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Developmental Biology, 2010, 338, 251-261.	0.9	138
13	Yap1 Is Required for Endothelial to Mesenchymal Transition of the Atrioventricular Cushion. Journal of Biological Chemistry, 2014, 289, 18681-18692.	1.6	136
14	Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochemical and Biophysical Research Communications, 2008, 375, 450-453.	1.0	126
15	Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2012, 52, 43-47.	0.9	122
16	WT1 Maintains Adrenal-Gonadal Primordium Identity and Marks a Population of AGP-like Progenitors within the Adrenal Gland. Developmental Cell, 2013, 27, 5-18.	3.1	98
17	Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Developmental Biology, 2016, 413, 153-159.	0.9	51
18	Design and validation of an endothelial progenitor cell capture chip and its application in patients with pulmonary arterial hypertension, Journal of Molecular Medicine, 2011, 89, 971-983	1.7	43

#	Article	IF	CITATIONS
19	Vascular Endothelial Growth Factor as Marker for Tissue Hypoxia and Transfusion Need in Anemic Infants: A Prospective Clinical Study. Pediatrics, 2009, 123, 784-790.	1.0	35
20	Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 222-230.	1.4	25
21	Bi-allelic missense disease-causing variants in RPL3L associate neonatal dilated cardiomyopathy with muscle-specific ribosome biogenesis. Human Genetics, 2020, 139, 1443-1454.	1.8	20
22	Ductal closure in neonates: a developmental perspective on platelet–endothelial interactions. Blood Coagulation and Fibrinolysis, 2011, 22, 242-244.	0.5	15
23	Platelet-rich plasma for the treatment of patent ductus arteriosus: not quite ready for prime time. Cardiology in the Young, 2015, 25, 139-140.	0.4	4
24	The First Keystone Symposia Conference on Pulmonary Vascular Disease and Right Ventricular Dysfunction: Current Concepts and Future Therapies. Pulmonary Circulation, 2013, 3, 275-277.	0.8	2
25	Design And Validation Of A Novel Endothelial Progenitor Cell (EPC) Microfluidic Capture Chip And Its Application In Patients With Pulmonary Arterial Hypertension. , 2011, , .		0