Ian Q Whishaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/138244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the origin of skilled forelimb movements. Trends in Neurosciences, 2000, 23, 372-376.	8.6	204
2	Cervical motoneuron topography reflects the proximodistal organization of muscles and movements of the rat forelimb: A retrograde carbocyanine dye analysis. Journal of Comparative Neurology, 2000, 419, 286-296.	1.6	135
3	Hippocampectomized rats are impaired in homing by path integration. Hippocampus, 1999, 9, 553-561.	1.9	132
4	Impairment of pronation, supination, and body co-ordination in reach-to-grasp tasks in human Parkinson's disease (PD) reveals homology to deficits in animal models. Behavioural Brain Research, 2002, 133, 165-176.	2.2	129
5	Varieties of paw and digit movement during spontaneous food handling in rats: Postures, bimanual coordination, preferences, and the effect of forelimb cortex lesions. Behavioural Brain Research, 1996, 77, 135-148.	2.2	125
6	Red nucleus lesions impair overground locomotion in rats: a kinetic analysis. European Journal of Neuroscience, 2000, 12, 1113-1122.	2.6	123
7	Skilled forelimb movements in prey catching and in reaching by rats (Rattus norvegicus) and opossums (Monodelphis domestica): relations to anatomical differences in motor systems. Behavioural Brain Research, 1996, 79, 163-181.	2.2	93
8	Perseveration on place reversals in spatial swimming pool tasks: Further evidence for place learning in hippocampal rats. , 1997, 7, 361-370.		93
9	An endpoint, descriptive, and kinematic comparison of skilled reaching in mice (Mus musculus) with rats (Rattus norvegicus). Behavioural Brain Research, 1996, 78, 101-111.	2.2	90
10	The development of a sex-differentiated defensive motor pattern in rats: A possible role for juvenile experience. Developmental Psychobiology, 1999, 35, 156-164.	1.6	82
11	The problem of relating plasticity and skilled reaching after motor cortex stroke in the rat. Behavioural Brain Research, 2008, 192, 124-136.	2.2	76
12	Different Evolutionary Origins for the Reach and the Grasp: An Explanation for Dual Visuomotor Channels in Primate Parietofrontal Cortex. Frontiers in Neurology, 2013, 4, 208.	2.4	75
13	Long–Evans and Sprague–Dawley rats have similar skilled reaching success and limb representations in motor cortex but different movements: some cautionary insights into the selection of rat strains for neurobiological motor research. Behavioural Brain Research, 2003, 145, 221-232.	2.2	71
14	Ground reaction forces in locomoting hemi-parkinsonian rats: a definitive test for impairments and compensations. Experimental Brain Research, 1999, 126, 307-314.	1.5	67
15	Absence of impairments or recovery mediated by the uncrossed pyramidal tract in the rat versus enduring deficits produced by the crossed pyramidal tract. Behavioural Brain Research, 2002, 134, 323-336.	2.2	55
16	Did a change in sensory control of skilled movements stimulate the evolution of the primate frontal cortex?. Behavioural Brain Research, 2003, 146, 31-41.	2.2	51
17	Calibrating space: Exploration is important for allothetic and idiothetic navigation. Hippocampus, 1999, 9, 659-667.	1.9	49
18	Hand shaping in the rat: Conserved release and collection vs. flexible manipulation in overground walking, ladder rung walking, cylinder exploration, and skilled reaching. Behavioural Brain Research, 2010, 206, 21-31.	2.2	43

IAN Q WHISHAW

#	Article	IF	CITATIONS
19	Chronic levodopa therapy does not improve skilled reach accuracy or reach range on a pasta matrix reaching task in 6-OHDA dopamine-depleted (hemi-Parkinson analogue) rats. European Journal of Neuroscience, 2001, 14, 27-37.	2.6	42
20	Visual Guidance for Hand Advance but Not Hand Withdrawal in a Reach-to-Eat Task in Adult Humans: Reaching Is a Composite Movement. Journal of Motor Behavior, 2008, 40, 337-346.	0.9	42
21	The Structure of Skilled Forelimb Reaching in the Rat: A Movement Rating Scale. Journal of Visualized Experiments, 2008, , .	0.3	41
22	Development of rotational movements, hand shaping, and accuracy in advance and withdrawal for the reach-to-eat movement in human infants aged 6–12 months. , 2012, 35, 543-560.		40
23	Independent development of the Reach and the Grasp in spontaneous self-touching by human infants in the first 6 months. Frontiers in Psychology, 2014, 5, 1526.	2.1	40
24	Organization of the reach and grasp in head-fixed vs freely-moving mice provides support for multiple motor channel theory of neocortical organization. Experimental Brain Research, 2017, 235, 1919-1932.	1.5	40
25	Distinct forelimb and hind limb stepping impairments in unilateral dopamine-depleted rats: use of the rotorod as a method for the qualitative analysis of skilled walking. Journal of Neuroscience Methods, 2003, 126, 13-23.	2.5	38
26	Similarities in the development of place and cue navigation by rats in a swimming pool. Developmental Psychobiology, 2000, 37, 238-245.	1.6	36
27	Unilateral Frontal Lobe Contusion and Forelimb Function: Chronic Quantitative and Qualitative Impairments in Reflexive and Skilled Forelimb Movements in Rats. Journal of Neurotrauma, 2004, 21, 1584-1600.	3.4	30
28	Drug treatment and familiar music aids an attention shift from vision to somatosensation in Parkinson's disease on the reach-to-eat task. Behavioural Brain Research, 2011, 217, 391-398.	2.2	27
29	Improved single pellet grasping using automated ad libitum full-time training robot. Behavioural Brain Research, 2015, 281, 137-148.	2.2	26
30	A Proposal for a Rat Model of Spinal Cord Injury Featuring the Rubrospinal Tract and its Contributions to Locomotion and Skilled Hand Movement. Frontiers in Neuroscience, 2016, 10, 5.	2.8	25
31	The structure of arm and hand movements in a spontaneous and food rewarded on-line string-pulling task by the mouse. Behavioural Brain Research, 2018, 345, 49-58.	2.2	25
32	The syntactic organization of pasta-eating and the structure of reach movements in the head-fixed mouse. Scientific Reports, 2017, 7, 10987.	3.3	24
33	Unilateral forelimb sensorimotor cortex devascularization disrupts the topographic and kinematic characteristics of hand movements while string-pulling for food in the rat. Behavioural Brain Research, 2018, 338, 88-100.	2.2	23
34	String-pulling for food by the rat: Assessment of movement, topography and kinematics of a bilaterally skilled forelimb act. Learning and Motivation, 2018, 61, 63-73.	1.2	22
35	Hind limb stepping over obstacles in the horse guided by place-object memory. Behavioural Brain Research, 2009, 198, 372-379.	2.2	20
36	Data-driven analyses of motor impairments in animal models of neurological disorders. PLoS Biology, 2019, 17, e3000516.	5.6	20

IAN Q WHISHAW

#	Article	IF	CITATIONS
37	The contribution of the reach and the grasp to shaping brain and behaviour Canadian Journal of Experimental Psychology, 2014, 68, 223-235.	0.8	19
38	Sniff, look and loop excursions as the unit of "exploration―in the horse (Equus ferus caballis) when free or under saddle in an equestrian arena. Behavioural Processes, 2020, 173, 104065.	1.1	19
39	Oral hapsis guides accurate hand preshaping for grasping food targets in the mouth. Experimental Brain Research, 2012, 221, 223-240.	1.5	17
40	A mouse's spontaneous eating repertoire aids performance on laboratory skilled reaching tasks: A motoric example of instinctual drift with an ethological description of the withdraw movements in freely-moving and head-fixed mice. Behavioural Brain Research, 2018, 337, 80-90.	2.2	17
41	A Matlab-based toolbox for characterizing behavior of rodents engaged in string-pulling. ELife, 2020, 9, .	6.0	17
42	Complete and Partial Lesions of the Pyramidal Tract in the Rat Affect Qualitative Measures of Skilled Movements: Impairment in Fixations as a Model for Clumsy Behavior. Neural Plasticity, 2003, 10, 77-92.	2.2	15
43	Skilled movement and posture deficits in rat string-pulling behavior following low dose space radiation (28Si) exposure. Behavioural Brain Research, 2021, 400, 113010.	2.2	15
44	Human string-pulling with and without a string: movement, sensory control, and memory. Experimental Brain Research, 2019, 237, 3431-3447.	1.5	14
45	Low acetylcholine during early sleep is important for motor memory consolidation. Sleep, 2020, 43, .	1.1	14
46	Spatial mapping takes time. Hippocampus, 1998, 8, 122-130.	1.9	13
47	The Evolution of the Hand as a Tool in Feeding Behavior: The Multiple Motor Channel Theory of Hand Use. Fascinating Life Sciences, 2019, , 159-186.	0.9	13
48	Use of Rotorod as a Method for the Qualitative Analysis of Walking in Rat. Journal of Visualized Experiments, 2008, , .	0.3	11
49	The functional origins of speech-related hand gestures. Behavioural Brain Research, 2010, 214, 206-215.	2.2	11
50	Arm and Hand Movement: Current Knowledge and Future Perspective. Frontiers in Neurology, 2015, 6, 19.	2.4	9
51	The temporal choreography of the yo-yo movement of getting spaghetti into the mouth by the head-fixed mouse. Behavioural Brain Research, 2020, 381, 112241.	2.2	9
52	Learning to cricket hunt by the laboratory mouse (Mus musculus): Skilled movements of the hands and mouth in cricket capture and consumption. Behavioural Brain Research, 2021, 412, 113404.	2.2	9
53	Tongue protrusions modify the syntax of skilled reaching for food by the mouse: Evidence for flexibility in action selection and shared hand/mouth central modulation of action. Behavioural Brain Research, 2018, 341, 37-44.	2.2	8
54	Does play shape hand use skill in rats?. Experimental Brain Research, 2021, 239, 1895-1909.	1.5	8

IAN Q WHISHAW

#	Article	IF	CITATIONS
55	Challenges of a small world analysis for the continuous monitoring of behavior in mice. Neuroscience and Biobehavioral Reviews, 2022, 136, 104621.	6.1	8
56	The medial frontal cortex contributes to but does not organize rat exploratory behavior. Neuroscience, 2016, 336, 1-11.	2.3	7
57	Cholinergic upregulation by optogenetic stimulation of nucleus basalis after photothrombotic stroke in forelimb somatosensory cortex improves endpoint and motor but not sensory control of skilled reaching in mice. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1608-1622.	4.3	7
58	Dissociation of the Reach and the Grasp in the destriate (V1) monkey Helen: a new anatomy for the dual visuomotor channel theory of reaching. Experimental Brain Research, 2016, 234, 2351-2362.	1.5	6
59	A Neural Network Reveals Motoric Effects of Maternal Preconception Exposure to Nicotine on Rat Pup Behavior: A New Approach for Movement Disorders Diagnosis. Frontiers in Neuroscience, 2021, 15, 686767.	2.8	6
60	Absence of population asymmetry in the American Quarter Horse (Equus ferus caballus) performing skilled left and right manoeuvres in reining competition. Laterality, 2015, 20, 604-617.	1.0	5
61	Obstacle Avoidance amongst Parkinson Disease Patients Is Challenged in a Threatening Context. Journal of Neurodegenerative Diseases, 2013, 2013, 1-8.	1.1	5
62	Synchrony of the Reach and the Grasp in pantomime reach-to-grasp. Experimental Brain Research, 2016, 234, 3291-3303.	1.5	4
63	Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl ₂ . Magnetic Resonance Insights, 2017, 10, 1178623X1770687.	2.5	4
64	Mouse Arm and hand movements in grooming are reaching movements: Evolution of reaching, handedness, and the thumbnail. Behavioural Brain Research, 2020, 393, 112732.	2.2	4
65	Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action–perception theory. Experimental Brain Research, 2018, 236, 1091-1103.	1.5	3
66	Hippocampectomized rats are impaired in homing by path integration. Hippocampus, 1999, 9, 553-561.	1.9	3
67	A Video Demonstration of Preserved Piloting by Scent Tracking but Impaired Dead Reckoning After Fimbria-Fornix Lesions in the Rat. Journal of Visualized Experiments, 2009, , .	0.3	2
68	Frame-by-Frame Video Analysis of Idiosyncratic Reach-to-Grasp Movements in Humans. Journal of Visualized Experiments, 2018, , .	0.3	2
69	Memory for Surface Objects in an Arena by the Horse (Equus ferus caballus) Under Saddle: Evidence for Dual Process Theory of Spatial Representation. Behavioural Processes, 2021, 189, 104442.	1.1	2
70	The hippocampus and path integration. Behavioral and Brain Sciences, 1999, 22, 467-467.	0.7	1
71	The spandrel may be related to culture not brain function. Behavioral and Brain Sciences, 2001, 24, 288-288.	0.7	1
72	The mane effect in the horse (Equus ferus caballus): Right mane dominance enhanced in mares but not associated with left and right manoeuvres in a reining competition. Laterality, 2017, 22, 495-513.	1.0	1

#	Article	IF	CITATIONS
73	Two types of memory-based (pantomime) reaches distinguished by gaze anchoring in reach-to-grasp tasks. Behavioural Brain Research, 2020, 381, 112438.	2.2	1