Rishi Mahajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1382425/publications.pdf

Version: 2024-02-01

1040056 888059 26 307 9 17 citations h-index g-index papers 27 27 27 406 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biodegradation of organophosphorus pesticide profenofos by the bacterium <i>Bacillus</i> sp. PF1 and elucidation of initial degradation pathway. Environmental Technology (United Kingdom), 2023, 44, 492-500.	2.2	8
2	Organophosphate pesticide: usage, environmental exposure, health effects, and microbial bioremediation., 2022,, 473-490.		3
3	Biological control of hairy root (Rhizobium rhizogenes) in apple nurseries through Rhizobium radiobacter antagonists (strain K-84 and native strain UHFBA-218). Biological Control, 2021, 164, 104762.	3.0	5
4	Effect of pretreatments on cellulosic composition and morphology of pine needle for possible utilization as substrate for anaerobic digestion. Biomass and Bioenergy, 2020, 141, 105705.	5.7	20
5	Biodegradation of di‑n‑butyl phthalate by psychrotolerant Sphingobium yanoikuyae strain P4 and protein structural analysis of carboxylesterase involved in the pathway. International Journal of Biological Macromolecules, 2019, 122, 806-816.	7.5	40
6	Insights into direct interspecies electron transfer mechanisms for acceleration of anaerobic digestion of wastes. International Journal of Environmental Science and Technology, 2019, 16, 2133-2142.	3.5	17
7	Influence of cationic polyacrilamide flocculant on high-solids' anaerobic digestion of sewage sludge under thermophilic conditions. Environmental Technology (United Kingdom), 2019, 40, 1146-1155.	2.2	20
8	Evaluating anaerobic and aerobic digestion strategies for degradation of pretreated pine needle litter. International Journal of Environmental Science and Technology, 2019, 16, 191-200.	3.5	7
9	Environmental Fate of Organophosphate Residues from Agricultural Soils to Fresh Farm Produce: Microbial Interventions for Sustainable Bioremediation Strategies. Microorganisms for Sustainability, 2019, , 211-224.	0.7	5
10	Microbial Profiling of Malera and Phab: Starters Used for Preparing Traditional Fermented Foods and Beverages in Himachal Pradesh, India. Current Nutrition and Food Science, 2019, 15, 707-711.	0.6	0
11	Statistical assessment of DNA extraction methodology for culture-independent analysis of microbial community associated with diverse environmental samples. Molecular Biology Reports, 2018, 45, 297-308.	2.3	3
12	Endocellulase Production by Cotylidia pannosa and its Application in Saccharification of Wheat Bran to Bioethanol. Bioenergy Research, 2018, 11, 219-227.	3.9	10
13	A simple HPLC–DAD method for simultaneous detection of two organophosphates, profenofos and fenthion, and validation by soil microcosm experiment. Environmental Monitoring and Assessment, 2018, 190, 327.	2.7	25
14	Optimization and Standardization of Conditions for Production of Commercially Viable Formulation of Native Agrobacterium sp. UHFBA-218. The National Academy of Sciences, India, 2018, 41, 249-253.	1.3	3
15	Molecular insights into the activity and mechanism of cyanide hydratase enzyme associated with cyanide biodegradation by Serratia marcescens. Archives of Microbiology, 2018, 200, 971-977.	2.2	6
16	A Review on the Implications of Interaction Between Human Pathogenic Bacteria and the Host on Food Quality and Disease., 2018,, 457-479.		2
17	Microbe-bio-Chemical Insight: Reviewing Interactions between Dietary Polyphenols and Gut Microbiota. Mini-Reviews in Medicinal Chemistry, 2018, 18, 1253-1264.	2.4	9
18	Development and diversity of lactic acid producing bacteria and bifidobacteria in healthy full term Indian infants from Himachal Pradesh. Intestinal Research, 2018, 16, 529-536.	2.6	3

#	Article	IF	CITATIONS
19	Selection of indigenousLactobacillus paracaseiCD4 andLactobacillus gastricusBTM 7 as probiotic: assessment of traits combined with principal component analysis. Journal of Applied Microbiology, 2017, 122, 1310-1320.	3.1	19
20	Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Brazilian Journal of Microbiology, 2017, 48, 294-304.	2.0	61
21	Microbe-bio-chemical insight: Reviewing interactions between dietary polyphenols and gut microbiota. Mini-Reviews in Medicinal Chemistry, 2017, 17, 1-1.	2.4	5
22	Autochthonous microbial community associated with pine needle forest litterfall influences its degradation under natural environmental conditions. Environmental Monitoring and Assessment, 2016, 188, 417.	2.7	12
23	Microbial diversity in an anaerobic digester with biogeographical proximity to geothermally active region. Environmental Technology (United Kingdom), 2016, 37, 2694-2702.	2.2	4
24	Mutagenesis of Alkalophilic Cellulosimicrobium sp. CKMX1 for Hyper-Production of Cellulase-Free Xylanase in Solid State Fermentation of Apple Pomace. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 241-252.	1.0	5
25	Protocol for Isolation and Identification of Agrobacterium Isolates from Stone Fruit Plants and Sensitivity of Native A. tumefaciens Isolates against Agrocin Produced by A. radiobacter Strain K84. The National Academy of Sciences, India, 2013, 36, 79-84.	1.3	5
26	Antagonistic potential of native agrocin-producing non-pathogenic Agrobacterium tumefaciens strain UHFBA-218 to control crown gall in peach. Phytoprotection, 0, 97, 1-11.	0.3	6