Xingliang Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/138238/publications.pdf Version: 2024-02-01

XINCHANC DAL

#	Article	IF	CITATIONS
1	Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515, 96-99.	13.7	2,119
2	Interfacial Control Toward Efficient and Lowâ€Voltage Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 2311-2316.	11.1	631
3	Quantumâ€Dot Lightâ€Emitting Diodes for Largeâ€Area Displays: Towards the Dawn of Commercialization. Advanced Materials, 2017, 29, 1607022.	11.1	620
4	Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. Journal of the American Chemical Society, 2019, 141, 6448-6452.	6.6	282
5	Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots. Nature Communications, 2020, 11, 937.	5.8	184
6	Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding Processability. Nano Letters, 2016, 16, 2133-2138.	4.5	174
7	Highâ€Performance, Solutionâ€Processed, and Insulatingâ€Layerâ€Free Lightâ€Emitting Diodes Based on Colloidal Quantum Dots. Advanced Materials, 2018, 30, e1801387.	11.1	151
8	Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications, 2017, 8, 1132.	5.8	105
9	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	18.7	99
10	Shelf‧table Quantumâ€Ðot Lightâ€Emitting Diodes with High Operational Performance. Advanced Materials, 2020, 32, e2006178.	11.1	68
11	Highâ€₽erformance Quantumâ€Đot Lightâ€Emitting Diodes Using NiO <i>_x</i> Holeâ€Injection Layers with a High and Stable Work Function. Advanced Functional Materials, 2020, 30, 1907265.	7.8	48
12	Design of the Hole-Injection/Hole-Transport Interfaces for Stable Quantum-Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 4649-4654.	2.1	34
13	Silicon-Quantum-Dot Light-Emitting Diodes With Interlayer-Enhanced Hole Transport. IEEE Photonics Journal, 2017, 9, 1-10.	1.0	24
14	Mixed Halide Perovskite Films by Vapor Anion Exchange for Spectrally Stable Blue Stimulated Emission. Small, 2021, 17, e2103169.	5.2	11
15	Inverted quantum dot light-emitting diodes with conductive interlayers of zirconium acetylacetonate. Journal of Materials Chemistry C, 2019, 7, 3154-3159.	2.7	9
16	Thiol Modification Enables ZnO-Nanocrystal Films with Atmosphere-Independent Conductance. Journal of Physical Chemistry C, 2021, 125, 20022-20027.	1.5	9
17	Ligand Exchange of Colloidal ZnO Nanocrystals from the High Temperature and Nonaqueous Approach. Nano-Micro Letters, 2013, 5, 274-280.	14.4	8
18	Decoupling the Positive and Negative Aging Processes of Perovskite Light-Emitting Diodes Using a Thin Interlayer of Ionic Liquid. Journal of Physical Chemistry Letters, 2021, 12, 7783-7791.	2.1	8

#	Article	IF	CITATIONS
19	Synthesis of Highly Monodisperse Cu ₂ O Nanocrystals and Their Applications as Holeâ€Transporting Layers in Solutionâ€Processed Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 14767-14770.	1.7	7
20	Tailoring the lateral size of two-dimensional silicon nanomaterials to produce highly stable and efficient deep-blue emissive silicene-like quantum dots. Journal of Materials Chemistry C, 2021, 9, 10065-10072.	2.7	7
21	Mixed Halide Perovskite Films by Vapor Anion Exchange for Spectrally Stable Blue Stimulated Emission (Small 39/2021). Small, 2021, 17, 2170202.	5.2	Ο