Nidal Hilal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1382168/publications.pdf Version: 2024-02-01

Νισλι Ηπλι

#	Article	IF	CITATIONS
1	Membrane distillation: A comprehensive review. Desalination, 2012, 287, 2-18.	8.2	1,999
2	Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356, 226-254.	8.2	1,432
3	Membrane technology enhancement in oil–water separation. A review. Desalination, 2015, 357, 197-207.	8.2	978
4	A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 2013, 326, 77-95.	8.2	823
5	Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 2013, 308, 15-33.	8.2	805
6	Reverse osmosis desalination: A state-of-the-art review. Desalination, 2019, 459, 59-104.	8.2	765
7	Characterisation of nanofiltration membranes for predictive purposes — use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science, 1997, 126, 91-105.	8.2	649
8	A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170, 281-308.	8.2	643
9	A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 2015, 356, 187-207.	8.2	465
10	Removal of heavy metal ions by nanofiltration. Desalination, 2013, 315, 2-17.	8.2	441
11	Application of Capacitive Deionisation in water desalination: A review. Desalination, 2014, 342, 3-15.	8.2	413
12	Interaction forces between colloidal particles in liquid: Theory and experiment. Advances in Colloid and Interface Science, 2007, 134-135, 151-166.	14.7	397
13	Methods Employed for Control of Fouling in MF and UF Membranes: A Comprehensive Review. Separation Science and Technology, 2005, 40, 1957-2005.	2.5	368
14	Boron removal from saline water: A comprehensive review. Desalination, 2011, 273, 23-35.	8.2	366
15	Solar powered desalination – Technology, energy and future outlook. Desalination, 2019, 453, 54-76.	8.2	358
16	A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination, 2015, 363, 2-18.	8.2	316
17	Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination, 2019, 452, 159-195.	8.2	300
18	Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination, 2011, 266, 1-16.	8.2	286

#	Article	IF	CITATIONS
19	Energy for desalination: A state-of-the-art review. Desalination, 2020, 491, 114569.	8.2	247
20	Thin film composite membrane — Recent development and future potential. Desalination, 2015, 356, 140-148.	8.2	245
21	Nanofiltration membranes and processes: A review of research trends over the past decade. Journal of Water Process Engineering, 2017, 19, 164-171.	5.6	229
22	Recent trends in membranes and membrane processes for desalination. Desalination, 2016, 391, 43-60.	8.2	223
23	Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation. Desalination, 2014, 344, 48-54.	8.2	212
24	Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Advances in Colloid and Interface Science, 2014, 206, 116-140.	14.7	211
25	Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. Desalination, 2015, 374, 47-69.	8.2	206
26	Osmotic's potential: An overview of draw solutes for forward osmosis. Desalination, 2018, 434, 100-120.	8.2	198
27	Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. Desalination, 2020, 485, 114455.	8.2	194
28	Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control. Desalination, 2017, 402, 123-132.	8.2	183
29	Produced water treatment: Application of Air Gap Membrane Distillation. Desalination, 2013, 309, 46-51.	8.2	176
30	Electrically conductive polymeric membranes for fouling prevention and detection: A review. Desalination, 2016, 391, 1-15.	8.2	165
31	Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chemical Engineering Journal, 2016, 293, 90-101.	12.7	148
32	Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. Journal of Water Process Engineering, 2020, 35, 101241.	5.6	148
33	Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. Journal of Membrane Science, 2010, 348, 109-116.	8.2	147
34	Mechanical properties of water desalination and wastewater treatment membranes. Desalination, 2017, 401, 190-205.	8.2	146
35	Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chemical Engineering Journal, 2011, 167, 77-83.	12.7	144
36	Characterisation of nanofiltration membranes using atomic force microscopy. Desalination, 2005, 177, 187-199.	8.2	140

#	Article	IF	CITATIONS
37	Treatment of highly concentrated dye solution by coagulation/flocculation–sand filtration and nanofiltration. Water Resources and Industry, 2013, 3, 23-34.	3.9	137
38	Kinetics of wetting and spreading by aqueous surfactant solutions. Advances in Colloid and Interface Science, 2008, 144, 54-65.	14.7	135
39	Emerging desalination technologies: Current status, challenges and future trends. Desalination, 2021, 517, 115183.	8.2	133
40	Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination, 2005, 184, 315-326.	8.2	131
41	Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination?. Desalination, 2019, 458, 84-96.	8.2	129
42	Hybrid technologies: The future of energy efficient desalination – A review. Desalination, 2020, 495, 114659.	8.2	129
43	Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination?. Desalination, 2016, 380, 100-104.	8.2	125
44	Concentration of apple juice using direct contact membrane distillation. Desalination, 2006, 190, 117-124.	8.2	122
45	Nuclear desalination: A state-of-the-art review. Desalination, 2019, 457, 39-61.	8.2	122
46	Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination. Desalination, 2016, 380, 105-111.	8.2	121
47	Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study. Materials Research Bulletin, 2004, 39, 1549-1556.	5.2	120
48	The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 2018, 443, 143-164.	8.2	120
49	Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD). Desalination, 2017, 420, 318-329.	8.2	119
50	Microfiltration membrane processes: A review of research trends over the past decade. Journal of Water Process Engineering, 2019, 32, 100941.	5.6	118
51	Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade. Journal of Water Process Engineering, 2019, 31, 100886.	5.6	117
52	Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler–Kedem model. Desalination, 2007, 206, 42-60.	8.2	116
53	Atomic force microscope studies of membranes: Surface pore structures of Cyclopore and Anopore membranes. Journal of Membrane Science, 1996, 110, 233-238.	8.2	115
54	Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination?. Desalination, 2016, 391, 69-88.	8.2	115

#	Article	IF	CITATIONS
55	Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination, 2018, 436, 176-201.	8.2	115
56	Surface modified polymeric membranes to reduce (bio)fouling: a microbiological study using E. coli. Desalination, 2004, 167, 293-300.	8.2	114
57	Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique. Journal of Membrane Science, 2010, 355, 133-141.	8.2	114
58	Heavy Metals Removal Using Adsorption and Nanofiltration Techniques. Separation and Purification Reviews, 2011, 40, 209-259.	5.5	114
59	Effect of dry-out on the fouling of PVDF and PTFE membranes under conditions simulating intermittent seawater membrane distillation (SWMD). Journal of Membrane Science, 2013, 438, 126-139.	8.2	114
60	Functional materials in desalination: A review. Desalination, 2019, 468, 114077.	8.2	111
61	Fouling mitigation in forward osmosis and membrane distillation for desalination. Desalination, 2020, 480, 114338.	8.2	111
62	Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. Separation and Purification Technology, 2006, 51, 48-56.	7.9	110
63	Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone. Desalination, 2012, 288, 31-39.	8.2	110
64	Membrane separation as a pre-treatment process for oily saline water. Desalination, 2018, 447, 182-202.	8.2	110
65	Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electroless plating. Desalination, 2004, 168, 241-252.	8.2	108
66	Alternative heating techniques in membrane distillation: A review. Desalination, 2020, 496, 114713.	8.2	108
67	A review of efforts to reduce membrane fouling by control of feed spacer characteristics. Desalination, 2017, 420, 384-402.	8.2	104
68	Photochemical modification of membrane surfaces for (bio)fouling reduction: a nano-scale study using AFM. Desalination, 2003, 158, 65-72.	8.2	102
69	Hybrid ion exchange – Pressure driven membrane processes in water treatment: A review. Separation and Purification Technology, 2013, 116, 253-264.	7.9	102
70	Electrically conductive membranes based on carbon nanostructures for self-cleaning of biofouling. Desalination, 2015, 360, 8-12.	8.2	102
71	Characterization Methods of Thin Film Composite Nanofiltration Membranes. Separation and Purification Reviews, 2015, 44, 135-156.	5.5	101
72	Biomimetic membranes: A critical review of recent progress. Desalination, 2017, 420, 403-424.	8.2	100

#	Article	IF	CITATIONS
73	A new technique for membrane characterisation: direct measurement of the force of adhesion of a single particle using an atomic force microscope. Journal of Membrane Science, 1998, 139, 269-274.	8.2	96
74	Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. Journal of Membrane Science, 2007, 289, 40-50.	8.2	96
75	Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 231-234.	4.7	95
76	Engineering nanocomposite membranes: Addressing current challenges and future opportunities. Desalination, 2017, 401, 1-15.	8.2	91
77	Current advances in membrane technologies for saline wastewater treatment: A comprehensive review. Desalination, 2021, 517, 115170.	8.2	91
78	The use of ultrafiltration and nanofiltration membranes in the treatment of metal-working fluids. Desalination, 2004, 167, 227-238.	8.2	90
79	The potential of thin film nanocomposite membrane in reducing organic fouling in forward osmosis process. Desalination, 2014, 348, 82-88.	8.2	90
80	Lithium recovery from brine: Recent developments and challenges. Desalination, 2022, 528, 115611.	8.2	90
81	Direct Measurement of Interactions between Adsorbed Protein Layers Using an Atomic Force Microscope. Journal of Colloid and Interface Science, 1998, 197, 348-352.	9.4	86
82	Robust superhydrophobic electrospun membrane fabricated by combination of electrospinning and electrospraying techniques for air gap membrane distillation. Desalination, 2018, 446, 70-82.	8.2	83
83	Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review. Desalination, 2019, 468, 114072.	8.2	83
84	An atomic force microscopy study of the adhesion of a silica sphere to a silica surface—effects of surface cleaning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 157, 117-125.	4.7	81
85	Response surface modeling and optimization of composite nanofiltration modified membranes. Journal of Membrane Science, 2010, 349, 113-122.	8.2	80
86	Comparative study of NF and RO membranes in the treatment of produced water—Part I: Assessing water quality. Desalination, 2013, 315, 18-26.	8.2	80
87	Characterisation of membrane surfaces: direct measurement of biological adhesion using an atomic force microscope. Journal of Membrane Science, 1999, 154, 205-212.	8.2	79
88	Treatment of high salinity solutions: Application of air gap membrane distillation. Desalination, 2012, 287, 55-60.	8.2	79
89	Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation–ultrafiltration process. Separation and Purification Technology, 2004, 40, 155-162.	7.9	78
90	Characterisation and quantification of membrane surface properties using atomic force microscopy: A comprehensive review. Desalination, 2015, 356, 149-164.	8.2	77

#	Article	IF	CITATIONS
91	Fabrication and antifouling behaviour of a carbon nanotube membrane. Materials and Design, 2016, 89, 549-558.	7.0	77
92	Quantification of particle–bubble interactions using atomic force microscopy: A review. Advances in Colloid and Interface Science, 2006, 127, 67-81.	14.7	76
93	Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment. Journal of Membrane Science, 2012, 389, 486-498.	8.2	76
94	Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review. Journal of Water Process Engineering, 2022, 45, 102478.	5.6	76
95	Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation. Desalination, 2011, 273, 36-47.	8.2	75
96	A novel in situ membrane cleaning method using periodic electrolysis. Journal of Membrane Science, 2014, 471, 149-154.	8.2	75
97	Air gap membrane distillation: A detailed study of high saline solution. Desalination, 2017, 403, 179-186.	8.2	75
98	Membrane desalination and water re-use for agriculture: State of the art and future outlook. Desalination, 2020, 491, 114559.	8.2	75
99	Lipase-immobilized biocatalytic membranes for enzymatic esterification: Comparison of various approaches to membrane preparation. Journal of Membrane Science, 2006, 268, 198-207.	8.2	72
100	Effect of the surface modification of polymer membranes on their microbiological fouling. Colloid Journal, 2006, 68, 267-273.	1.3	72
101	Thin Film Nanocomposite (TFN) membranes modified with polydopamine coated metals/carbon-nanostructures for desalination applications. Desalination, 2018, 427, 60-74.	8.2	71
102	Fabrication of antibacterial mixed matrix nanocomposite membranes using hybrid nanostructure of silver coated multi-walled carbon nanotubes. Chemical Engineering Journal, 2017, 326, 721-736.	12.7	70
103	Surface modified microfiltration membranes with molecularly recognising properties. Journal of Membrane Science, 2003, 213, 97-113.	8.2	68
104	Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. Journal of Membrane Science, 2004, 238, 131-141.	8.2	68
105	Critical wetting concentrations of trisiloxane surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 143-148.	4.7	68
106	Boron removal in new generation reverse osmosis (RO) membranes using two-pass RO without pH adjustment. Desalination, 2013, 310, 50-59.	8.2	68
107	Comprehensive review of membrane design and synthesis for membrane distillation. Desalination, 2021, 518, 115168.	8.2	68
108	Visualisation of an ultrafiltration membrane by non-contact atomic force microscopy at single pore resolution. Journal of Membrane Science, 1996, 110, 229-232.	8.2	67

#	Article	IF	CITATIONS
109	Boron removal from water with fractionized Amberlite IRA743 resin. Desalination, 2015, 370, 1-6.	8.2	66
110	The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. Journal of Water Process Engineering, 2020, 38, 101544.	5.6	65
111	High recovery rate NF–FO–RO hybrid system for inland brackish water treatment. Desalination, 2015, 363, 19-25.	8.2	64
112	Mathematical and optimization modelling in desalination: State-of-the-art and future direction. Desalination, 2019, 469, 114092.	8.2	64
113	Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: Decolourisation, kinetics and phytotoxicity studies. Journal of Water Process Engineering, 2017, 16, 258-269.	5.6	63
114	A study on producing composite nanofiltration membranes with optimized properties. Desalination, 2003, 158, 73-78.	8.2	62
115	Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. Journal of Membrane Science, 2016, 510, 524-532.	8.2	61
116	Atomic force microscope studies of membranes: force measurement and imaging in electrolyte solutions. Journal of Membrane Science, 1997, 126, 77-89.	8.2	60
117	Evaluation of several commercial synthetic polymers as flocculant aids for removal of highly concentrated C.I. Acid Black 210 dye. Journal of Hazardous Materials, 2010, 182, 624-630.	12.4	60
118	Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. Membranes, 2020, 10, 248.	3.0	60
119	Characterization and retention of NF membranes using PEG, HS and polyelectrolytes. Desalination, 2008, 221, 284-293.	8.2	59
120	Comparison of two different UV-grafted nanofiltration membranes prepared for reduction of humic acid fouling using acrylic acid and N-vinylpyrrolidone. Desalination, 2012, 287, 19-29.	8.2	58
121	Effect of Bed Diameter, Distributor and Inserts on Minimum Fluidization Velocity. Chemical Engineering and Technology, 2001, 24, 161.	1.5	57
122	Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. Desalination, 2020, 491, 114557.	8.2	56
123	A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion. Journal of Membrane Science, 2015, 482, 103-114.	8.2	55
124	Modelling of air gap membrane distillation and its application in heavy metals removal. Desalination, 2017, 424, 27-36.	8.2	55
125	Spreading of Aqueous Solutions of Trisiloxanes and Conventional Surfactants over PTFE AF Coated Silicone Wafers. Langmuir, 2009, 25, 3564-3570.	3.5	54
126	Atomic Force Microscope Studies of Membranes: Surface Pore Structures of Diaflo Ultrafiltration Membranes. Journal of Colloid and Interface Science, 1996, 180, 350-359.	9.4	52

#	Article	IF	CITATIONS
127	Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology. Desalination, 2010, 261, 284-292.	8.2	52
128	Salinity gradient energy generation by pressure retarded osmosis: A review. Desalination, 2021, 500, 114841.	8.2	52
129	Ion Exchange Extraction of Heavy Metal Ions from Wastewater. Separation Science and Technology, 2005, 39, 2031-2040.	2.5	51
130	Scale formation in desalination plants: effect of carbon dioxide solubility. Desalination, 2007, 204, 385-402.	8.2	51
131	Simulation and optimisation of extractive distillation with water as solvent. Chemical Engineering and Processing: Process Intensification, 2005, 44, 345-351.	3.6	50
132	An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. Analytical Methods, 2015, 7, 2693-2698.	2.7	50
133	A comparative study of the flocculation behaviour and final properties of synthetic and activated sludge in wastewater treatment. Desalination, 2007, 204, 277-295.	8.2	48
134	Neural Networks Simulation of the Filtration of Sodium Chloride and Magnesium Chloride Solutions Using Nanofiltration Membranes. Chemical Engineering Research and Design, 2007, 85, 417-430.	5.6	48
135	Nanocomposite nanofiltration membranes: State of play and recent advances. Desalination, 2022, 524, 115480.	8.2	48
136	Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent. Chemical Engineering Journal, 2012, 183, 294-302.	12.7	47
137	An integrated fertilizer driven forward osmosis- renewables powered membrane distillation system for brackish water desalination: A combined experimental and theoretical approach. Desalination, 2019, 471, 114126.	8.2	47
138	Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: a review. Desalination, 2003, 157, 137-144.	8.2	46
139	Flux decline study during ultrafiltration of glycerin-rich fatty acid solutions. Journal of Membrane Science, 2010, 351, 75-86.	8.2	46
140	Reducing flux decline and fouling of direct contact membrane distillation by utilizing thermal brine from MSF desalination plant. Desalination, 2016, 379, 172-181.	8.2	46
141	Nanofiltration membrane modification by UV grafting for salt rejection and fouling resistance improvement for brackish water desalination. Desalination, 2012, 295, 16-25.	8.2	45
142	Treatment of saline solutions using Air Gap Membrane Distillation: Experimental study. Desalination, 2013, 323, 2-7.	8.2	45
143	Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review. Membranes, 2020, 10, 332.	3.0	45
144	Identification of foulants, fouling mechanisms and cleaning efficiency for NF and RO treatment of produced water. Separation and Purification Technology, 2013, 118, 324-341.	7.9	43

#	Article	IF	CITATIONS
145	Hybrid chitosan/FeCl3 coagulation–membrane processes: Performance evaluation and membrane fouling study in removing natural organic matter. Separation and Purification Technology, 2015, 152, 23-31.	7.9	43
146	A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. Journal of Industrial and Engineering Chemistry, 2021, 101, 78-125.	5.8	43
147	Sensitivity analysis and faults diagnosis using artificial neural networks in natural gas TEG-dehydration plants. Chemical Engineering Journal, 2008, 137, 189-197.	12.7	42
148	Artificial neural network simulation of combined humic substance coagulation and membrane filtration. Chemical Engineering Journal, 2008, 141, 27-34.	12.7	42
149	Optimisation of polyethersulfone/polyaniline blended membranes using response surface methodology approach. Desalination, 2013, 311, 182-191.	8.2	42
150	Modeling and optimization of a solar forward osmosis pilot plant by response surface methodology. Solar Energy, 2016, 137, 290-302.	6.1	42
151	Preparation and characterization of novel porous PMMA-SiO2 hybrid membranes. Desalination, 2006, 192, 262-270.	8.2	41
152	Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO 2 xerogels. Journal of Membrane Science, 2015, 493, 807-819.	8.2	41
153	Unlocking the application potential of forward osmosis through integrated/hybrid process. Science of the Total Environment, 2020, 706, 136047.	8.0	41
154	A Review of Atomic Force Microscopy Applied to Cell Interactions with Membranes. Chemical Engineering Research and Design, 2006, 84, 282-292.	5.6	40
155	Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide. Journal of Water Process Engineering, 2014, 4, 159-165.	5.6	40
156	Coagulation/flocculation of lignin aqueous solution in single stage mixing tank system: Modeling and optimization by response surface methodology. Journal of Environmental Chemical Engineering, 2015, 3, 2145-2154.	6.7	40
157	Comparison between dual-layer (superhydrophobic–hydrophobic) and single superhydrophobic layer electrospun membranes for heavy metal recovery by air-gap membrane distillation. Desalination, 2018, 439, 31-45.	8.2	40
158	Breakthroughs in the fabrication of electrospun-nanofiber-supported thin film composite/nanocomposite membranes for the forward osmosis process: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 1727-1795.	12.8	40
159	Treatment of textile wastewater by submerged membrane bioreactor: InÂvitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. Journal of Environmental Management, 2015, 160, 184-192.	7.8	39
160	Investigation of UF membranes fouling and potentials as pre-treatment step in desalination and surface water applications. Desalination, 2018, 432, 115-127.	8.2	39
161	Electrospun membranes for membrane distillation: The state of play and recent advances. Desalination, 2022, 526, 115511.	8.2	39
162	Dual-stage forward osmosis/pressure retarded osmosis process for hypersaline solutions and fracking wastewater treatment. Desalination, 2014, 350, 79-85.	8.2	38

#	Article	IF	CITATIONS
163	Chitosan as natural coagulant in hybrid coagulation-nanofiltration membrane process for water treatment. Journal of Environmental Chemical Engineering, 2016, 4, 4857-4862.	6.7	37
164	Improved thin films of pentacene via pulsed laser deposition at elevated substrate temperatures. Applied Physics Letters, 1996, 69, 2231-2233.	3.3	36
165	The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension. Desalination, 2008, 220, 273-289.	8.2	36
166	Removal of oil from oil-water emulsion by hybrid coagulation/sand filter as pre-treatment. Journal of Water Process Engineering, 2018, 26, 17-27.	5.6	36
167	An atomic force microscope study of calcium carbonate adhesion to desalination process equipment: effect of anti-scale agent. Desalination, 2008, 220, 359-370.	8.2	35
168	Effects of polyaniline nanoparticles in polyethersulfone ultrafiltration membranes: Fouling behaviours by different types of foulant. Journal of Industrial and Engineering Chemistry, 2014, 20, 3134-3140.	5.8	35
169	Hybrid coagulation–NF membrane process for brackish water treatment: Effect of antiscalant on water characteristics and membrane fouling. Desalination, 2016, 393, 144-150.	8.2	35
170	Electrically conductive spacers for self-cleaning membrane surfaces via periodic electrolysis. Desalination, 2017, 416, 16-23.	8.2	35
171	State of the art review on membrane surface characterisation: Visualisation, verification and quantification of membrane properties. Desalination, 2018, 434, 12-36.	8.2	35
172	Brackish water desalination for agriculture: Assessing the performance of inorganic fertilizer draw solutions. Desalination, 2019, 456, 53-63.	8.2	35
173	Breaking through the selectivity-permeability tradeoff using nano zeolite-Y for micellar enhanced ultrafiltration dye rejection application. Separation and Purification Technology, 2020, 242, 116824.	7.9	35
174	Advances in Membrane Distillation Module Configurations. Membranes, 2022, 12, 81.	3.0	35
175	Formation of stable clusters in colloidal suspensions. Advances in Colloid and Interface Science, 2009, 147-148, 144-154.	14.7	34
176	Atomic force microscopy studies of bioprocess engineering surfaces – imaging, interactions and mechanical properties mediating bacterial adhesion. Biotechnology Journal, 2017, 12, 1600698.	3.5	34
177	Effect of membrane performance including fouling on cost optimization in brackish water desalination process. Chemical Engineering Research and Design, 2017, 117, 401-413.	5.6	34
178	Flux and salt rejection enhancement of polyvinyl(alcohol) reverse osmosis membranes using nano-zeolite. Desalination, 2019, 470, 114104.	8.2	34
179	Synthesis and characterization of poly(methyl methacrylate)/SiO2 hybrid membrane. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 422-426.	5.6	33
180	Comparative study of NF and RO membranes in the treatment of produced water II: Toxicity removal efficiency. Desalination, 2013, 315, 27-32.	8.2	33

#	Article	IF	CITATIONS
181	Membrane distillation—Principles, applications, configurations, design, and implementation. , 2018, , 55-106.		33
182	Enhanced performance of direct contact membrane distillation via selected electrothermal heating of membrane surface. Journal of Membrane Science, 2020, 610, 118224.	8.2	33
183	Atomic force microscope study of the rejection of colloids by membrane pores. Desalination, 2002, 150, 289-295.	8.2	32
184	Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes. Desalination, 2017, 404, 313-321.	8.2	32
185	Bulk and surface characterization of composite UF membranes Atomic force microscopy, gas adsorption-desorption and liquid displacement techniques. Journal of Membrane Science, 1997, 128, 7-21.	8.2	31
186	Modelling the effects of nanofiltration membrane properties on system cost assessment for desalination applications. Desalination, 2007, 206, 215-225.	8.2	31
187	Characterization and retention of UF membranes using PEG, HS and polyelectrolytes. Desalination, 2007, 206, 568-578.	8.2	31
188	Determination of the effect of cations and cationic polyelectrolytes on the characteristics and final properties of synthetic and activated sludge. Desalination, 2008, 222, 307-317.	8.2	31
189	Adhesion forces between humic acid functionalized colloidal probes and polymer membranes to assess fouling potential. Journal of Membrane Science, 2015, 484, 35-46.	8.2	31
190	A combined ion exchange–nanofiltration process for water desalination: II. Membrane selection. Desalination, 2015, 363, 51-57.	8.2	31
191	Electrically conductive membranes for in situ fouling detection in membrane distillation using impedance spectroscopy. Journal of Membrane Science, 2018, 556, 66-72.	8.2	31
192	Electro-ceramic self-cleaning membranes for biofouling control and prevention in water treatment. Chemical Engineering Journal, 2021, 415, 128395.	12.7	31
193	Electrically conductive membranes for contemporaneous dye rejection and degradation. Chemical Engineering Journal, 2022, 428, 131184.	12.7	31
194	Performance of PAN-based membranes with graft copolymers bearing hydrophilic PVA and PAN segments in direct ultrafiltration of natural rubber effluent. Desalination, 2015, 358, 49-60.	8.2	30
195	A combined ion exchange–nanofiltration process for water desalination: I. sulphate–chloride ion-exchange in saline solutions. Desalination, 2015, 363, 44-50.	8.2	30
196	Optimisation of the removal of oil in water emulsion by using ceramic microfiltration membrane and hybrid coagulation/sand filter-MF. Journal of Water Process Engineering, 2019, 27, 15-23.	5.6	30
197	Treatment of waste coolants by coagulation and membrane filtration. Chemical Engineering and Processing: Process Intensification, 2004, 43, 811-821.	3.6	29
198	Inverted polarity micellar enhanced ultrafiltration for the treatment of heavy metal polluted wastewater. Desalination, 2005, 185, 185-202.	8.2	29

#	Article	IF	CITATIONS
199	Effect of Carbon Dioxide in Seawater on Desalination: A Comprehensive Review. Separation and Purification Reviews, 2006, 35, 223-247.	5.5	29
200	Characterization of synthetic and activated sludge and conditioning with cationic polyelectrolytes. Desalination, 2008, 227, 103-110.	8.2	29
201	Combined humic substance and heavy metals coagulation, and membrane filtration under saline conditions. Desalination, 2010, 253, 46-50.	8.2	29
202	The expansion of gas-fluidised beds in bubbling fluidisation. Chemical Engineering Science, 1997, 52, 2811-2822.	3.8	28
203	The effects of electrostatic interactions on the rejection of colloids by membrane pores—visualisation and quantification. Chemical Engineering Science, 1999, 54, 369-375.	3.8	28
204	Parameters affecting the solubility of carbon dioxide in seawater at the conditions encountered in MSF desalination plants. Desalination, 2008, 222, 548-571.	8.2	28
205	Laser Doppler Electrophoresis and electro-osmotic flow mapping: A novel methodology for the determination of membrane surface zeta potential. Journal of Membrane Science, 2017, 523, 524-532.	8.2	28
206	Novel low-fouling membranes from lab to pilot application in textile wastewater treatment. Journal of Colloid and Interface Science, 2018, 515, 208-220.	9.4	28
207	The emerging role of 3D printing in water desalination. Science of the Total Environment, 2021, 790, 148238.	8.0	28
208	Characterization of molecularly imprinted composite membranes using an atomic force microscope. Surface and Interface Analysis, 2002, 33, 672-675.	1.8	27
209	Atomic force microscopy study of membranes modified by surface grafting of cationic polyelectrolyte. Desalination, 2005, 184, 45-55.	8.2	27
210	The Chemistry of Boron in Water. , 2015, , 35-63.		27
211	Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures. Desalination, 2019, 470, 114118.	8.2	27
212	Analytical and forecasting study for wastewater treatment and water resources in Saudi Arabia. Journal of Water Process Engineering, 2019, 32, 100915.	5.6	27
213	Can graphene and graphene oxide materials revolutionise desalination processes?. Desalination, 2021, 500, 114852.	8.2	27
214	Remineralization of desalinated water: Methods and environmental impact. Desalination, 2020, 496, 114692.	8.2	27
215	Performance of Nanofiltration Membranes in the Treatment of Synthetic and Real Seawater. Separation Science and Technology, 2007, 42, 493-515.	2.5	26
216	The relationship between cation ions and polysaccharide on the floc formation of synthetic and activated sludge. Desalination, 2008, 227, 94-102.	8.2	26

#	Article	IF	CITATIONS
217	Neural network modeling for separation of bentonite in tubular ceramic membranes. Desalination, 2008, 228, 175-182.	8.2	26
218	Analysis of deposition mechanism during ultrafiltration of glycerin-rich solutions. Desalination, 2010, 261, 313-320.	8.2	26
219	A simple model for the prediction of CO2 solubility in H2O–NaCl system at geological sequestration conditions. Desalination, 2010, 260, 114-118.	8.2	26
220	Interactions between nanoparticles in nanosuspension. Advances in Colloid and Interface Science, 2019, 272, 102020.	14.7	26
221	Effect of lithium chloride additive on forward osmosis membranes performance. Journal of Water Process Engineering, 2020, 33, 101049.	5.6	26
222	Nanofiltration of Magnesium Chloride, Sodium Carbonate, and Calcium Sulphate in Salt Solutions. Separation Science and Technology, 2005, 40, 3299-3321.	2.5	25
223	Hybrid coagulation–NF membrane processes for brackish water treatment: Effect of pH and salt/calcium concentration. Desalination, 2016, 390, 25-32.	8.2	25
224	Investigations of the effect of pore size of ceramic membranes on the pilot-scale removal of oil from oil-water emulsion. Journal of Water Process Engineering, 2019, 31, 100868.	5.6	25
225	Development of forward osmosis membranes modified by cross-linked layer by layer assembly for brackish water desalination. Journal of Membrane Science, 2019, 583, 267-277.	8.2	25
226	Membrane distillation process application using a novel ceramic membrane for Brackish water desalination. Desalination, 2021, 500, 114906.	8.2	25
227	Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha. Fuel, 2004, 83, 409-417.	6.4	23
228	Measurements of Interactions between Particles and Charged Microbubbles Using a Combined Micro- and Macroscopic Strategy. Langmuir, 2009, 25, 4880-4885.	3.5	23
229	Dual stage PRO process for power generation from different feed resources. Desalination, 2014, 352, 118-127.	8.2	23
230	Superior cross-linking assisted layer by layer modification of forward osmosis membranes for brackish water desalination. Desalination, 2019, 463, 1-12.	8.2	23
231	Interaction between ballasting agent and flocs in ballasted flocculation for the removal of suspended solids in water. Journal of Water Process Engineering, 2020, 33, 101028.	5.6	23
232	Thin layer composite molecularly imprinted membranes for selective separation of cAMP. Separation and Purification Technology, 2003, 31, 281-289.	7.9	22
233	Effects of heavy metals and polyelectrolytes in humic substance coagulation under saline conditions. Desalination, 2008, 220, 85-95.	8.2	22
234	Microfiltration of micro-sized suspensions of boron-selective resin with PVDF membranes. Desalination, 2017, 403, 161-171.	8.2	22

#	Article	IF	CITATIONS
235	The hybridization of thermally-driven desalination processes: The state-of-the-art and opportunities. Desalination, 2021, 506, 115002.	8.2	22
236	Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. Membranes, 2021, 11, 832.	3.0	22
237	The removal of copper in water using manganese activated saturated and unsaturated sand filters. Chemical Engineering Journal, 2012, 209, 334-344.	12.7	21
238	Hierarchical underwater oleophobic electro-ceramic/carbon nanostructure membranes for highly efficient oil-in-water separation. Separation and Purification Technology, 2021, 275, 119241.	7.9	21
239	The reduction of extractive agent in extractive distillation and auto-extractive distillation. Chemical Engineering and Processing: Process Intensification, 2002, 41, 673-679.	3.6	20
240	Interfacially polymerized nanofiltration membranes: Atomic force microscopy and salt rejection studies. Journal of Applied Polymer Science, 2005, 96, 605-612.	2.6	20
241	Degradation of the antimicrobial triclocarban (TCC) with ozone. Chemical Engineering and Processing: Process Intensification, 2011, 50, 637-643.	3.6	20
242	Electrically conducting nanofiltration membranes based on networked cellulose and carbon nanostructures. Desalination, 2017, 406, 60-66.	8.2	20
243	Exploring the current state of play for cost-effective water treatment by membranes. Npj Clean Water, 2018, 1, .	8.0	20
244	Superhydrophilic and underwater superoleophobic nano zeolite membranes for efficient oil-in-water nanoemulsion separation. Journal of Water Process Engineering, 2021, 40, 101802.	5.6	20
245	Green Approaches for Sustainable Development of Liquid Separation Membrane. Membranes, 2021, 11, 235.	3.0	20
246	Investigating Characteristics of Increasing Molecular Weight Cutoff Polyamide Nanofiltration Membranes Using Solutes Rejection and Atomic Force Microscopy. Separation Science and Technology, 2003, 38, 1307-1327.	2.5	19
247	Selective recognition of organic pollutants in aqueous solutions with composite imprinted membranes. Advances in Colloid and Interface Science, 2010, 159, 180-188.	14.7	19
248	A combined ion exchange–nanofiltration process for water desalination: III. Pilot scale studies. Desalination, 2015, 363, 58-63.	8.2	19
249	Mechanical Characterization of Membranes. , 2017, , 259-306.		19
250	Analysis and Evaluation of the Liquidâ^'Liquid Equilibrium Data of the Extraction of Aromatics from Hydrocarbons by Tetraethylene Glycol. Journal of Chemical & Engineering Data, 2003, 48, 1614-1619.	1.9	18
251	Treatment of Landfill Leachate Wastewater by Nanofiltration Membrane. International Journal of Green Energy, 2004, 1, 251-263.	3.8	18
252	An Equilibrium Ionâ€Exchange Study on the Removal of NH4+Ion from Aqueous Effluent Using Clinoptilolite. Separation Science and Technology, 2005, 39, 3639-3663.	2.5	18

#	Article	IF	CITATIONS
253	Removal of Highly Concentrated Industrial Grade Leather Dye: Study on Several Flocculation and Sand Filtration Parameters. Separation Science and Technology, 2011, 46, 883-892.	2.5	18
254	Design optimization of high performance dual stage pressure retarded osmosis. Desalination, 2015, 355, 217-224.	8.2	18
255	Experimental investigation of forward osmosis process for boron removal from water. Journal of Water Process Engineering, 2020, 38, 101570.	5.6	18
256	Investigating the dynamics of segregation of high jetsam binary batch fluidised bed systems. Chemical Engineering and Processing: Process Intensification, 2004, 43, 187-192.	3.6	17
257	A pilot-plant study of the adsorptive micellar flocculation process: Optimum design and operation. Separation and Purification Technology, 2008, 62, 273-280.	7.9	17
258	OPERATING PARAMETERS EFFECT ON METHANOL–ACETONE SEPARATION BY EXTRACTIVE DISTILLATION. Separation Science and Technology, 2002, 37, 3291-3303.	2.5	16
259	Hydrodynamic studies in both bi-dimensional and three-dimensional bubble columns with a single sparger. Chemical Engineering and Processing: Process Intensification, 2003, 42, 403-408.	3.6	16
260	A study of the tensile properties of liquids in confined spaces using an atomic force microscope. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 2885-2908.	2.1	16
261	Poly(methyl methacrylate)/SIO2 hybrid membranes: Effect of solvents on structural and thermal properties. Journal of Applied Polymer Science, 2006, 99, 3163-3171.	2.6	16
262	Enhanced Membrane Preâ€Treatment Processes using Macromolecular Adsorption and Coagulation in Desalination Plants: A Review. Separation Science and Technology, 2006, 41, 403-453.	2.5	16
263	Intermittent direct joule heating of membrane surface for seawater desalination by air gap membrane distillation. Journal of Membrane Science, 2022, 648, 120390.	8.2	16
264	Heat transfer from vertical inserts in gas-fluidized beds. International Journal of Heat and Mass Transfer, 1996, 39, 3357-3365.	4.8	15
265	Heat transfer from vertical surfaces to dense gas-fluidized beds. International Journal of Heat and Mass Transfer, 1994, 37, 2465-2473.	4.8	14
266	Numerical modelling of concentration polarisation and cake formation in membrane filtration processes. Desalination, 2015, 365, 151-159.	8.2	14
267	Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. Science of the Total Environment, 2022, 838, 156014.	8.0	14
268	Experimental Investigation on the Separation of Bentonite using Ceramic Membranes: Effect of Turbulence Promoters. Separation Science and Technology, 2008, 43, 286-309.	2.5	13
269	Investigation of Kinetics and Mechanism Involved in the Biosorption of Heavy Metals on Activated Sludge. International Journal of Green Energy, 2008, 5, 313-321.	3.8	13
270	Periodic electrolysis technique for in situ fouling control and removal with low-pressure membrane filtration. Desalination, 2018, 433, 10-24.	8.2	13

#	Article	IF	CITATIONS
271	Optimisation of washing cycle on ultrafiltration membranes used in treatment of metalworking fluids. Desalination, 2003, 156, 199-207.	8.2	12
272	Use of activated carbon to polish effluent from metalworking treatment plant: comparison of different streams. Desalination, 2005, 185, 297-306.	8.2	12
273	Removal of NH4+Ion from NH4Cl Solution Using Clinoptilolite: A Dynamic Study Using a Continuous Packedâ€Bed Column in Upâ€Flow Mode. Separation Science and Technology, 2005, 39, 1347-1364.	2.5	12
274	Dual stage PRO power generation from brackish water brine and wastewater effluent feeds. Desalination, 2016, 389, 68-77.	8.2	12
275	Ammonium ion removal using activated zeolite and chitosan. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2448.	1.5	12
276	Humic substance coagulation: Artificial neural network simulation. Desalination, 2010, 253, 153-157.	8.2	11
277	UV-photografting modification of NF membrane surface for NOM wfouling reduction. Desalination and Water Treatment, 2013, 51, 4855-4861.	1.0	11
278	Polymer membranes – Fractal characteristics and determination of roughness scaling exponents. Journal of Membrane Science, 2019, 570-571, 9-22.	8.2	11
279	3D printed zeolite-Y for removing heavy metals from water. Journal of Water Process Engineering, 2021, 42, 102187.	5.6	11
280	Solid hold up in gas fluidised beds. Chemical Engineering and Processing: Process Intensification, 2002, 41, 373-379.	3.6	10
281	Optimized nanofiltration membranes: relevance to economic assessment and process performance. Desalination, 2004, 165, 243-250.	8.2	10
282	Colloidal dynamics: Influence of diffusion, inertia and colloidal forces on cluster formation. Journal of Colloid and Interface Science, 2008, 325, 377-385.	9.4	10
283	The use of factorial design in the analysis of air-gap membrane distillation data. Desalination, 2015, 367, 90-102.	8.2	10
284	Atomic Force Microscopy (AFM). , 2017, , 115-144.		10
285	Innovative and sustainable membrane technology for wastewater treatment and desalination application. , 2020, , 291-319.		10
286	Nanocrystalline NiWO4-WO3-WO2.9 Composite Strings: Fabrication, Characterization and their Electrocatalytic Performance for Hydrogen Evolution Reaction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1264-1274.	2.2	10
287	Evaluating Fertilizer-Drawn Forward Osmosis Performance in Treating Anaerobic Palm Oil Mill Effluent. Membranes, 2021, 11, 566.	3.0	10
288	Effect of different filter aids used in cake filtration process on the removal of suspended solids in anaerobically digested palm oil mill effluent (POME). , 0, 110, 362-370.		10

#	Article	IF	CITATIONS
289	Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge. Journal of Hazardous Materials, 2007, 139, 265-274.	12.4	9
290	Spreading behaviour of aqueous trisiloxane solutions over hydrophobic polymer substrates. Colloid Journal, 2009, 71, 391-396.	1.3	9
291	The express monitoring of organic pollutants in water with composite imprinted membranes. Journal of Membrane Science, 2011, 377, 151-158.	8.2	9
292	Manganese Coated Sand for Copper (II) Removal from Water in Batch Mode. Water (Switzerland), 2013, 5, 1487-1501.	2.7	9
293	Predicting the structural parameters of integrally skinned porous membranes. Journal of Membrane Science, 2014, 454, 451-462.	8.2	9
294	Dewatering of POME digestate using lignosulfonate driven forward osmosis. Separation and Purification Technology, 2020, 235, 116151.	7.9	9
295	Transient multi gas—solid reactions in a bubbling fluidized bed. Canadian Journal of Chemical Engineering, 2000, 78, 433-441.	1.7	8
296	(Bio)fouling of Polymeric Membranes: Atomic Force Microscope Study. Engineering in Life Sciences, 2002, 2, 131.	3.6	8
297	Volumetric Mass Transfer Coefficient in non-Newtonian Fluids in Spout Fluid Beds. Chemical Engineering and Technology, 2003, 26, 759-764.	1.5	8
298	Composite Microfiltration Membranes Imprinted with cAMP. Chemical Engineering and Technology, 2003, 26, 463-468.	1.5	8
299	The relationship between particle properties and fluidizing velocity during fluidized bed heat transfer. Advanced Powder Technology, 2004, 15, 583-594.	4.1	8
300	Reversible coagulation of colloidal suspension in shallow potential wells: Direct numerical simulation. Colloid Journal, 2009, 71, 503-513.	1.3	8
301	Surface modification of nanofiltration membrane for reduction of membrane fouling. Desalination and Water Treatment, 2009, 10, 298-305.	1.0	8
302	Basic Principles of Atomic Force Microscopy. , 2009, , 1-30.		8
303	Description of membrane fouling characteristics during ultrafiltration of organic foulants contained in sweetwater solutions. Journal of Environmental Chemical Engineering, 2014, 2, 1243-1251.	6.7	8
304	Statistical analysis of air-gap membrane desalination experimental data: Hypothesis testing. Desalination, 2015, 362, 117-125.	8.2	8
305	Thermodynamic optimization of Multistage Pressure Retarded Osmosis (MPRO) with variable feed pressures for hypersaline solutions. Desalination, 2020, 477, 114245.	8.2	8
306	Titanium coating on ultrafiltration inorganic membranes for fouling control. Separation and Purification Technology, 2022, 282, 119997.	7.9	8

#	Article	IF	CITATIONS
307	Comparison of Different Pitch Lengths on Static Promoters for Flux Enhancement in Tubular Ceramic Membrane. Separation Science and Technology, 2007, 42, 1945-1963.	2.5	7
308	Effect of anti-scale agents on the solubility of CO2 in seawater at temperatures of 60 to 90ºC and pressures of 1–2 bar. Desalination, 2008, 227, 46-56.	8.2	7
309	Tubular nanofiltration of highly concentrated C.I. Acid Black 210 dye. Water Science and Technology, 2013, 67, 901-906.	2.5	7
310	Biomolecule-Enabled Liquid Separation Membranes: Potential and Recent Progress. Membranes, 2022, 12, 148.	3.0	7
311	Porosity in ancient glass from Syria(c. 800AD) using gas adsorption and atomic force microscopy. Surface and Interface Analysis, 2004, 36, 1323-1329.	1.8	6
312	Optimized nanofiltration membranes: relevance to economic assessment and process performance. Desalination, 2004, 165, 243-250.	8.2	6
313	Membrane Separation Processes. , 2007, , 351-389.		6
314	Combined Humic Substance and Heavy Metals Agglomeration, and Membrane Filtration under Saline Conditions. Separation Science and Technology, 2008, 43, 1488-1506.	2.5	6
315	Measurement of Particle and Surface Interactions Using Force Microscopy. , 2009, , 31-80.		6
316	Effect of Hydrodynamic Operations, Salinity, and Heavy Metals on HA Removal by Microfiltration Ceramic Tubular Membrane. Separation Science and Technology, 2013, 48, 564-570.	2.5	6
317	Ab Initio Prediction of the Performance of Membrane Separation Processes. Comprehensive Chemical Kinetics, 1999, 37, 523-541.	2.3	5
318	The Use of Atomic Force Microscopy in Membrane Characterization. , 2010, , 337-354.		5
319	Design Parameter Effects on Expansion in Fluidized Beds with Inserts. Chemical Engineering and Technology, 2001, 24, 355-359.	1.5	4
320	Heat Transfer to Immersed and Boundary Surfaces in Fluidized Beds. Chemical Engineering and Technology, 2002, 25, 967-973.	1.5	4
321	The dependence of solid expansion on bed diameter, particles material, size and distributor in open fluidized beds. Advanced Powder Technology, 2005, 16, 73-86.	4.1	4
322	MICROSCOPY Atomic Force Microscopy. , 2014, , 666-675.		4
323	Electrokinetic Phenomena for Membrane Charge. , 2017, , 405-422.		4
324	Towards a Sustainable Water Supply: Humic Acid Removal Employing Coagulation and Tangential Cross Flow Microfiltration. Water (Switzerland), 2019, 11, 2093.	2.7	4

#	Article	IF	CITATIONS
325	Correlating Distributor Effect on Expansion of Particles in Fluidized Beds with Inserts Journal of Chemical Engineering of Japan, 2000, 33, 901-905.	0.6	4
326	<scp>3D</scp> printed electrically conductive interdigitated spacer on ultrafiltration membrane for electrolytic cleaning and chlorination. Journal of Applied Polymer Science, 2022, 139, .	2.6	4
327	Examining predictive correlations for equilibrium concentration profiles in jetsam-rich systems. Advanced Powder Technology, 2004, 15, 311-320.	4.1	3
328	Combined humic substance coagulation and membrane filtration under saline conditions. Desalination and Water Treatment, 2009, 1, 194-200.	1.0	3
329	Basic principles of osmosis and osmotic pressure. , 2021, , 1-15.		3
330	Comparison of the intrinsic parameters (A, B and S) of a forward osmosis membrane using pressurized and non-pressurized methods. , 0, 129, 14-23.		3
331	Investigating binary mixtures fluidized using a porous plate. Advanced Powder Technology, 2004, 15, 435-446.	4.1	2
332	Non-Newtonian Fluids in Spout-Fluid Beds: Mass Transfer Coefficient at Low Reynolds Numbers. Particulate Science and Technology, 2004, 22, 391-403.	2.1	2
333	Treatment of metalworking fluids: development of a bioconsortium for the treatment of nanofiltration permeate. Journal of Chemical Technology and Biotechnology, 2005, 80, 641-648.	3.2	2
334	Concentration of potassium cations in the permeate solution in the presence of N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer using dead-end nano-or ultrafiltration. Colloid Journal, 2006, 68, 211-216.	1.3	2
335	Bed Expansion – Extending Correlations for Fluidized Beds with Inserts to Open Fluidized Beds. Chemical Engineering and Technology, 2007, 30, 655-658.	1.5	2
336	Operating Conditions Corresponding to Optimal Final Properties of Activated Sludge Using the DOE and RSM Techniques. Separation Science and Technology, 2009, 44, 2041-2066.	2.5	2
337	Development of polyamide forward osmosis membrane for humic acid removal. Desalination and Water Treatment, 2016, 57, 29113-29117.	1.0	2
338	The Use of Modeling for Characterization of Membranes. , 2017, , 359-378.		2
339	Adsorption of Ammonia Nitrogen by using Jackfruit (Artocarpus heterophyllus) Seeds: Batch and Fixed-bed Column Studies. Current Environmental Engineering, 2018, 5, 202-210.	0.6	2
340	Experimental Investigation on the Removal of Toner Particles from Laser-Printed Office Waste Papers. International Journal of Green Energy, 2004, 1, 115-122.	3.8	1
341	A force balance model of a spouted bed for Darcy and non-Darcy flow in the annulus. Advanced Powder Technology, 2005, 16, 35-48.	4.1	1
342	Characterisation and Nanomechanical Properties of Ink-Jet Media Using Atomic Force Microscopy. International Journal of Green Energy, 2006, 3, 423-439.	3.8	1

#	Article	IF	CITATIONS
343	AFM and Development of (Bio)Fouling-Resistant Membranes. , 2009, , 139-171.		1
344	Modifications of Polymeric Membranes by Incorporating Metal/Metal Oxide Nanoparticles. , 2012, , 77-118.		1
345	Mass Transport in Porous Liquid Phase Membranes. , 2017, , 337-358.		1
346	Membrane Modules for Large-Scale Salinity Gradient Process Applications. , 2018, , 223-242.		1
347	Principles of forward osmosis. , 2021, , 131-148.		1
348	Polyester Thin Film Composite Nanofiltration Membranes Prepared by Interfacial Polymerization Technique for Removal of Humic Acid. , 2013, , 111-117.		1
349	MICROSCOPY Atomic Force Microscopy. , 1999, , 1418-1425.		0
350	First Oxford and Nottingham Water and Membranes Research Event 2–4 July 2006. Desalination, 2008, 227, 1.	8.2	0
351	Investigating Membranes and Membrane Processes with Atomic Force Microscopy. , 2009, , 107-138.		0
352	Atomic Force Microscopy Investigations of Membranes and Membrane Processes. , 0, , 105-125.		0
353	Foreword. Advances in Colloid and Interface Science, 2011, 164, 1.	14.7	0
354	Combined Macromolecular Adsorption and Coagulation for Improvement of Membrane Separation in Water Treatment. , 2012, , 231-265.		0
355	Feed Solution Characterization. , 2017, , 379-404.		0
356	Development of an axisymmetric parallel solution algorithm for membrane separation process. Desalination, 2019, 471, 114127.	8.2	0
357	Application of PRO process for seawater and wastewater treatment: assessment of membrane performance. , 2021, , 203-244.		0
358	Principle and theoretical background of pressure-retarded osmosis process. , 2021, , 187-202.		0
359	A Study of Cavitation Phenomena Using an Atomic Force Microscope. , 2002, , 243-254.		0
360	Quantification of Particle–Bubble Interactions Using Atomic Force Microscopy. , 2009, , 81-105.		0

#	Article	IF	CITATIONS
361	Development of Antifouling Properties and Performance of Nanofiltration Membranes by Interfacial Polymerization and Photografting Techniques. , 2012, , 119-158.		0
362	Atomic Force Microscopy (AFM). , 2014, , 1-3.		0
363	Atomic Force Microscopy (AFM). , 2016, , 127-129.		0
364	Atomic-force microscopy investigations of filtration membranes. , 2017, , 189-212.		0
365	Influence of Particle Size and Pressure Drop in Cake Filtration Process on Removal of Suspended Solids in Anaerobically Digested Palm Oil Mill Effluent. International Journal of Engineering Transactions B: Applications, 2018, 31, .	0.5	0