Nidal Hilal

List of Publications by Citations

Source: https://exaly.com/author-pdf/1382168/nidal-hilal-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

20,804 360 70 133 h-index g-index citations papers 8.1 7.64 370 24,252 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
360	Membrane distillation: A comprehensive review. <i>Desalination</i> , 2012 , 287, 2-18	10.3	1562
359	Nanofiltration membranes review: Recent advances and future prospects. <i>Desalination</i> , 2015 , 356, 226-	254 3	1014
358	Membrane technology enhancement in oilwater separation. A review. <i>Desalination</i> , 2015 , 357, 197-207	10.3	714
357	Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. <i>Desalination</i> , 2013 , 308, 15-33	10.3	654
356	A review on membrane fabrication: Structure, properties and performance relationship. <i>Desalination</i> , 2013 , 326, 77-95	10.3	606
355	Characterisation of nanofiltration membranes for predictive purposes luse of salts, uncharged solutes and atomic force microscopy. <i>Journal of Membrane Science</i> , 1997 , 126, 91-105	9.6	567
354	A comprehensive review of nanofiltration membranes:Treatment, pretreatment, modelling, and atomic force microscopy. <i>Desalination</i> , 2004 , 170, 281-308	10.3	547
353	Reverse osmosis desalination: A state-of-the-art review. <i>Desalination</i> , 2019 , 459, 59-104	10.3	410
352	A comprehensive review on surface modified polymer membranes for biofouling mitigation. <i>Desalination</i> , 2015 , 356, 187-207	10.3	372
351	Removal of heavy metal ions by nanofiltration. <i>Desalination</i> , 2013 , 315, 2-17	10.3	365
350	Interaction forces between colloidal particles in liquid: theory and experiment. <i>Advances in Colloid and Interface Science</i> , 2007 , 134-135, 151-66	14.3	326
349	Methods Employed for Control of Fouling in MF and UF Membranes: A Comprehensive Review. <i>Separation Science and Technology</i> , 2005 , 40, 1957-2005	2.5	325
348	Application of Capacitive Deionisation in water desalination: A review. <i>Desalination</i> , 2014 , 342, 3-15	10.3	309
347	Boron removal from saline water: A comprehensive review. <i>Desalination</i> , 2011 , 273, 23-35	10.3	284
346	A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. <i>Desalination</i> , 2015 , 363, 2-18	10.3	251
345	Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. <i>Desalination</i> , 2011 , 266, 1-16	10.3	248
344	Solar powered desalination [Technology, energy and future outlook. <i>Desalination</i> , 2019 , 453, 54-76	10.3	198

(2008-2014)

343	Underwater superoleophobic cellulose/electrospun PVDFBFP membranes for efficient oil/water separation. <i>Desalination</i> , 2014 , 344, 48-54	10.3	185
342	Thin film composite membrane [Recent development and future potential. <i>Desalination</i> , 2015 , 356, 140-148	10.3	182
341	Recent trends in membranes and membrane processes for desalination. <i>Desalination</i> , 2016 , 391, 43-60	10.3	180
340	Reverse osmosis pretreatment technologies and future trends: A comprehensive review. <i>Desalination</i> , 2019 , 452, 159-195	10.3	175
339	Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. <i>Advances in Colloid and Interface Science</i> , 2014 , 206, 116-40	14.3	169
338	Water desalination by forward (direct) osmosis phenomenon: A comprehensive review. <i>Desalination</i> , 2015 , 374, 47-69	10.3	166
337	Nanofiltration membranes and processes: A review of research trends over the past decade. Journal of Water Process Engineering, 2017 , 19, 164-171	6.7	162
336	Produced water treatment: Application of Air Gap Membrane Distillation. <i>Desalination</i> , 2013 , 309, 46-57	10.3	147
335	Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control. <i>Desalination</i> , 2017 , 402, 123-132	10.3	140
334	Osmotic® potential: An overview of draw solutes for forward osmosis. <i>Desalination</i> , 2018 , 434, 100-120	10.3	139
333	Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. <i>Journal of Membrane Science</i> , 2010 , 348, 109-116	9.6	129
332	Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. <i>Chemical Engineering Journal</i> , 2016 , 293, 90-101	14.7	125
331	Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. <i>Chemical Engineering Journal</i> , 2011 , 167, 77-83	14.7	124
330	Characterisation of nanofiltration membranes using atomic force microscopy. <i>Desalination</i> , 2005 , 177, 187-199	10.3	118
329	Electrically conductive polymeric membranes for fouling prevention and detection: A review. <i>Desalination</i> , 2016 , 391, 1-15	10.3	114
328	Energy for desalination: A state-of-the-art review. <i>Desalination</i> , 2020 , 491, 114569	10.3	113
327	Nanofiltration of highly concentrated salt solutions up to seawater salinity. <i>Desalination</i> , 2005 , 184, 315	5-B26	112
326	Kinetics of wetting and spreading by aqueous surfactant solutions. <i>Advances in Colloid and Interface Science</i> , 2008 , 144, 54-65	14.3	110

325	Surface modified polymeric membranes to reduce (bio)fouling: a microbiological study using E. coli. <i>Desalination</i> , 2004 , 167, 293-300	10.3	106
324	Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination?. <i>Desalination</i> , 2016 , 380, 100-104	10.3	105
323	Treatment of highly concentrated dye solution by coagulation/flocculationBand filtration and nanofiltration. <i>Water Resources and Industry</i> , 2013 , 3, 23-34	4.5	105
322	Concentration of apple juice using direct contact membrane distillation. <i>Desalination</i> , 2006 , 190, 117-12	40.3	105
321	Recent advances in the development of (bio)fouling resistant thin film composite membranes for desalination. <i>Desalination</i> , 2016 , 380, 105-111	10.3	101
320	Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique. <i>Journal of Membrane Science</i> , 2010 , 355, 133-141	9.6	101
319	Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study. <i>Materials Research Bulletin</i> , 2004 , 39, 1549-1556	5.1	100
318	Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electroless plating. <i>Desalination</i> , 2004 , 168, 241-252	10.3	100
317	Effect of dry-out on the fouling of PVDF and PTFE membranes under conditions simulating intermittent seawater membrane distillation (SWMD). <i>Journal of Membrane Science</i> , 2013 , 438, 126-139	9.6	99
316	Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook. <i>Desalination</i> , 2020 , 485, 114455	10.3	98
315	Mechanical properties of water desalination and wastewater treatment membranes. <i>Desalination</i> , 2017 , 401, 190-205	10.3	96
314	Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination?. <i>Desalination</i> , 2016 , 391, 69-88	10.3	95
313	Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. <i>Separation and Purification Technology</i> , 2006 , 51, 48-56	8.3	95
312	Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD). <i>Desalination</i> , 2017 , 420, 318-329	10.3	94
311	Photochemical modification of membrane surfaces for (bio)fouling reduction: a nano-scale study using AFM. <i>Desalination</i> , 2003 , 158, 65-72	10.3	94
310	Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler Redem model. <i>Desalination</i> , 2007 , 206, 42-60	10.3	93
309	Heavy Metals Removal Using Adsorption and Nanofiltration Techniques. <i>Separation and Purification Reviews</i> , 2011 , 40, 209-259	7.3	92
308	Formation and characterization of polyethersulfone membranes using different concentrations of polyvinylpyrrolidone. <i>Desalination</i> , 2012 , 288, 31-39	10.3	86

307	Atomic force microscope studies of membranes: Surface pore structures of Cyclopore and Anopore membranes. <i>Journal of Membrane Science</i> , 1996 , 110, 233-238	9.6	86
306	Hybrid ion exchange Pressure driven membrane processes in water treatment: A review. <i>Separation and Purification Technology</i> , 2013 , 116, 253-264	8.3	85
305	Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1998 , 136, 231-234	5.1	85
304	Electrically conductive membranes based on carbon nanostructures for self-cleaning of biofouling. <i>Desalination</i> , 2015 , 360, 8-12	10.3	81
303	Direct Measurement of Interactions between Adsorbed Protein Layers Using an Atomic Force Microscope. <i>Journal of Colloid and Interface Science</i> , 1998 , 197, 348-52	9.3	81
302	Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. <i>Desalination</i> , 2018 , 436, 176-201	10.3	80
301	The use of ultrafiltration and nanofiltration membranes in the treatment of metal-working fluids. <i>Desalination</i> , 2004 , 167, 227-238	10.3	80
300	A new technique for membrane characterisation: direct measurement of the force of adhesion of a single particle using an atomic force microscope. <i>Journal of Membrane Science</i> , 1998 , 139, 269-274	9.6	79
299	Characterization Methods of Thin Film Composite Nanofiltration Membranes. <i>Separation and Purification Reviews</i> , 2015 , 44, 135-156	7.3	78
298	Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes. <i>Journal of Membrane Science</i> , 2007 , 289, 40-50	9.6	78
297	Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade. <i>Journal of Water Process Engineering</i> , 2019 , 31, 100886	6.7	77
296	The potential of thin film nanocomposite membrane in reducing organic fouling in forward osmosis process. <i>Desalination</i> , 2014 , 348, 82-88	10.3	77
295	The use of ultrasound to mitigate membrane fouling in desalination and water treatment. <i>Desalination</i> , 2018 , 443, 143-164	10.3	74
294	Response surface modeling and optimization of composite nanofiltration modified membranes. <i>Journal of Membrane Science</i> , 2010 , 349, 113-122	9.6	73
293	Characterisation of membrane surfaces: direct measurement of biological adhesion using an atomic force microscope. <i>Journal of Membrane Science</i> , 1999 , 154, 205-212	9.6	71
292	Functional materials in desalination: A review. <i>Desalination</i> , 2019 , 468, 114077	10.3	70
291	An atomic force microscopy study of the adhesion of a silica sphere to a silica surface of surface cleaning. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 157, 117-125	5.1	70
290	Treatment of high salinity solutions: Application of air gap membrane distillation. <i>Desalination</i> , 2012 , 287, 55-60	10.3	69

289	A review of efforts to reduce membrane fouling by control of feed spacer characteristics. <i>Desalination</i> , 2017 , 420, 384-402	10.3	69
288	Biomimetic membranes: A critical review of recent progress. <i>Desalination</i> , 2017 , 420, 403-424	10.3	69
287	Nuclear desalination: A state-of-the-art review. <i>Desalination</i> , 2019 , 457, 39-61	10.3	69
286	Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination?. <i>Desalination</i> , 2019 , 458, 84-96	10.3	67
285	Membrane separation as a pre-treatment process for oily saline water. <i>Desalination</i> , 2018 , 447, 182-202	10.3	67
284	Comparative study of NF and RO membranes in the treatment of produced water P art I: Assessing water quality. <i>Desalination</i> , 2013 , 315, 18-26	10.3	66
283	Engineering nanocomposite membranes: Addressing current challenges and future opportunities. <i>Desalination</i> , 2017 , 401, 1-15	10.3	66
282	Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation Ultrafiltration process. <i>Separation and Purification Technology</i> , 2004 , 40, 155-162	8.3	66
281	Fabrication and antifouling behaviour of a carbon nanotube membrane. <i>Materials and Design</i> , 2016 , 89, 549-558	8.1	65
280	Microfiltration membrane processes: A review of research trends over the past decade. <i>Journal of Water Process Engineering</i> , 2019 , 32, 100941	6.7	65
279	Characterisation and quantification of membrane surface properties using atomic force microscopy: A comprehensive review. <i>Desalination</i> , 2015 , 356, 149-164	10.3	65
278	Quantification of particle-bubble interactions using atomic force microscopy: A review. <i>Advances in Colloid and Interface Science</i> , 2006 , 127, 67-81	14.3	65
277	Lipase-immobilized biocatalytic membranes for enzymatic esterification: Comparison of various approaches to membrane preparation. <i>Journal of Membrane Science</i> , 2006 , 268, 198-207	9.6	65
276	Effect of the surface modification of polymer membranes on their microbiological fouling. <i>Colloid Journal</i> , 2006 , 68, 267-273	1.1	65
275	Fouling mitigation in forward osmosis and membrane distillation for desalination. <i>Desalination</i> , 2020 , 480, 114338	10.3	62
274	Air gap membrane distillation: A detailed study of high saline solution. <i>Desalination</i> , 2017 , 403, 179-186	10.3	62
273	Contemporary antibiofouling modifications of reverse osmosis desalination membrane: A review. <i>Desalination</i> , 2019 , 468, 114072	10.3	60
272	Hybrid technologies: The future of energy efficient desalination [A review. <i>Desalination</i> , 2020 , 495, 1146	550 .3	60

(2010-2011)

271	Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation. <i>Desalination</i> , 2011 , 273, 36-47	10.3	59	
270	Critical wetting concentrations of trisiloxane surfactants. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 354, 143-148	5.1	59	
269	Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. <i>Journal of Membrane Science</i> , 2004 , 238, 131-141	9.6	59	
268	Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. <i>Journal of Water Process Engineering</i> , 2020 , 35, 101241	6.7	58	
267	Fabrication of antibacterial mixed matrix nanocomposite membranes using hybrid nanostructure of silver coated multi-walled carbon nanotubes. <i>Chemical Engineering Journal</i> , 2017 , 326, 721-736	14.7	58	
266	A novel in situ membrane cleaning method using periodic electrolysis. <i>Journal of Membrane Science</i> , 2014 , 471, 149-154	9.6	57	
265	Visualisation of an ultrafiltration membrane by non-contact atomic force microscopy at single pore resolution. <i>Journal of Membrane Science</i> , 1996 , 110, 229-232	9.6	57	
264	A study on producing composite nanofiltration membranes with optimized properties. <i>Desalination</i> , 2003 , 158, 73-78	10.3	56	
263	Thin Film Nanocomposite (TFN) membranes modified with polydopamine coated metals/carbon-nanostructures for desalination applications. <i>Desalination</i> , 2018 , 427, 60-74	10.3	54	
262	Surface modified microfiltration membranes with molecularly recognising properties. <i>Journal of Membrane Science</i> , 2003 , 213, 97-113	9.6	54	
261	Atomic force microscope studies of membranes: force measurement and imaging in electrolyte solutions. <i>Journal of Membrane Science</i> , 1997 , 126, 77-89	9.6	53	
260	Comparison of two different UV-grafted nanofiltration membranes prepared for reduction of humic acid fouling using acrylic acid and N-vinylpyrrolidone. <i>Desalination</i> , 2012 , 287, 19-29	10.3	52	
259	Boron removal in new generation reverse osmosis (RO) membranes using two-pass RO without pH adjustment. <i>Desalination</i> , 2013 , 310, 50-59	10.3	51	
258	Spreading of aqueous solutions of trisiloxanes and conventional surfactants over PTFE AF coated silicone wafers. <i>Langmuir</i> , 2009 , 25, 3564-70	4	51	
257	Characterization and retention of NF membranes using PEG, HS and polyelectrolytes. <i>Desalination</i> , 2008 , 221, 284-293	10.3	51	
256	Robust superhydrophobic electrospun membrane fabricated by combination of electrospinning and electrospraying techniques for air gap membrane distillation. <i>Desalination</i> , 2018 , 446, 70-82	10.3	51	
255	High recovery rate NF E O R O hybrid system for inland brackish water treatment. <i>Desalination</i> , 2015 , 363, 19-25	10.3	50	
254	Evaluation of several commercial synthetic polymers as flocculant aids for removal of highly concentrated C.I. Acid Black 210 dye. <i>Journal of Hazardous Materials</i> , 2010 , 182, 624-30	12.8	50	

253	Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. <i>Journal of Membrane Science</i> , 2016 , 510, 524-532	9.6	49
252	Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment. Journal of Membrane Science, 2012, 389, 486-498	9.6	49
251	Boron removal from water with fractionized Amberlite IRA743 resin. <i>Desalination</i> , 2015 , 370, 1-6	10.3	49
250	Scale formation in desalination plants: effect of carbon dioxide solubility. <i>Desalination</i> , 2007 , 204, 385-	-402 .3	47
249	Atomic Force Microscope Studies of Membranes: Surface Pore Structures of Diaflo Ultrafiltration Membranes. <i>Journal of Colloid and Interface Science</i> , 1996 , 180, 350-359	9.3	46
248	The role of wastewater treatment plants as tools for SARS-CoV-2 early detection and removal. <i>Journal of Water Process Engineering</i> , 2020 , 38, 101544	6.7	45
247	A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion. <i>Journal of Membrane Science</i> , 2015 , 482, 103-114	9.6	44
246	Flux decline study during ultrafiltration of glycerin-rich fatty acid solutions. <i>Journal of Membrane Science</i> , 2010 , 351, 75-86	9.6	43
245	Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology. <i>Desalination</i> , 2010 , 261, 284-292	10.3	43
244	Simulation and optimisation of extractive distillation with water as solvent. <i>Chemical Engineering and Processing: Process Intensification</i> , 2005 , 44, 345-351	3.7	43
243	Effect of Bed Diameter, Distributor and Inserts on Minimum Fluidization Velocity. <i>Chemical Engineering and Technology</i> , 2001 , 24, 161	2	43
242	Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: Decolourisation, kinetics and phytotoxicity studies. <i>Journal of Water Process Engineering</i> , 2017 , 16, 258-269	6.7	42
241	A comparative study of the flocculation behaviour and final properties of synthetic and activated sludge in wastewater treatment. <i>Desalination</i> , 2007 , 204, 277-295	10.3	42
240	Mathematical and optimization modelling in desalination: State-of-the-art and future direction. <i>Desalination</i> , 2019 , 469, 114092	10.3	41
239	Using atomic force microscopy towards improvement in nanofiltration membranes properties for desalination pre-treatment: a review. <i>Desalination</i> , 2003 , 157, 137-144	10.3	41
238	Modelling of air gap membrane distillation and its application in heavy metals removal. <i>Desalination</i> , 2017 , 424, 27-36	10.3	40
237	Membrane desalination and water re-use for agriculture: State of the art and future outlook. <i>Desalination</i> , 2020 , 491, 114559	10.3	39
236	Nanofiltration membrane modification by UV grafting for salt rejection and fouling resistance improvement for brackish water desalination. <i>Desalination</i> , 2012 , 295, 16-25	10.3	39

(2008-2015)

235	Layer-by-layer surface modification of polyethersulfone membranes using polyelectrolytes and AgCl/TiO 2 xerogels. <i>Journal of Membrane Science</i> , 2015 , 493, 807-819	9.6	39	
234	Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent. <i>Chemical Engineering Journal</i> , 2012 , 183, 294-302	14.7	38	
233	Neural Networks Simulation of the Filtration of Sodium Chloride and Magnesium Chloride Solutions Using Nanofiltration Membranes. <i>Chemical Engineering Research and Design</i> , 2007 , 85, 417-430	5.5	38	
232	A Review of Atomic Force Microscopy Applied to Cell Interactions with Membranes. <i>Chemical Engineering Research and Design</i> , 2006 , 84, 282-292	5.5	38	
231	Treatment of saline solutions using Air Gap Membrane Distillation: Experimental study. <i>Desalination</i> , 2013 , 323, 2-7	10.3	37	
230	Identification of foulants, fouling mechanisms and cleaning efficiency for NF and RO treatment of produced water. <i>Separation and Purification Technology</i> , 2013 , 118, 324-341	8.3	37	
229	Artificial neural network simulation of combined humic substance coagulation and membrane filtration. <i>Chemical Engineering Journal</i> , 2008 , 141, 27-34	14.7	36	
228	Reducing flux decline and fouling of direct contact membrane distillation by utilizing thermal brine from MSF desalination plant. <i>Desalination</i> , 2016 , 379, 172-181	10.3	35	
227	Ion Exchange Extraction of Heavy Metal Ions from Wastewater. <i>Separation Science and Technology</i> , 2005 , 39, 2031-2040	2.5	35	
226	Preparation and characterization of novel porous PMMA-SiO2 hybrid membranes. <i>Desalination</i> , 2006 , 192, 262-270	10.3	35	
225	Improved thin films of pentacene via pulsed laser deposition at elevated substrate temperatures. <i>Applied Physics Letters</i> , 1996 , 69, 2231-2233	3.4	35	
224	An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. <i>Analytical Methods</i> , 2015 , 7, 2693-2698	3.2	34	
223	Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. <i>Journal of Environmental Management</i> , 2015 , 160, 184-92	7.9	34	
222	Modeling and optimization of a solar forward osmosis pilot plant by response surface methodology. <i>Solar Energy</i> , 2016 , 137, 290-302	6.8	34	
221	Optimisation of polyethersulfone/polyaniline blended membranes using response surface methodology approach. <i>Desalination</i> , 2013 , 311, 182-191	10.3	34	
220	Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. <i>Desalination</i> , 2020 , 491, 114557	10.3	33	
219	An integrated fertilizer driven forward osmosis- renewables powered membrane distillation system for brackish water desalination: A combined experimental and theoretical approach. <i>Desalination</i> , 2019 , 471, 114126	10.3	32	
218	Sensitivity analysis and faults diagnosis using artificial neural networks in natural gas TEG-dehydration plants. <i>Chemical Engineering Journal</i> , 2008 , 137, 189-197	14.7	32	

217	Hybrid chitosan/FeCl3 coagulationEnembrane processes: Performance evaluation and membrane fouling study in removing natural organic matter. <i>Separation and Purification Technology</i> , 2015 , 152, 23-	·313	31
216	Coagulation/flocculation of lignin aqueous solution in single stage mixing tank system: Modeling and optimization by response surface methodology. <i>Journal of Environmental Chemical Engineering</i> , 2015 , 3, 2145-2154	6.8	31
215	Dual-stage forward osmosis/pressure retarded osmosis process for hypersaline solutions and fracking wastewater treatment. <i>Desalination</i> , 2014 , 350, 79-85	10.3	31
214	Effects of polyaniline nanoparticles in polyethersulfone ultrafiltration membranes: Fouling behaviours by different types of foulant. <i>Journal of Industrial and Engineering Chemistry</i> , 2014 , 20, 3134	-3740	31
213	Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide. <i>Journal of Water Process Engineering</i> , 2014 , 4, 159-165	6.7	31
212	Formation of stable clusters in colloidal suspensions. <i>Advances in Colloid and Interface Science</i> , 2009 , 147-148, 144-54	14.3	31
211	Alternative heating techniques in membrane distillation: A review. <i>Desalination</i> , 2020 , 496, 114713	10.3	30
210	Brackish water desalination for agriculture: Assessing the performance of inorganic fertilizer draw solutions. <i>Desalination</i> , 2019 , 456, 53-63	10.3	29
209	Comparison between dual-layer (superhydrophobic dydrophobic) and single superhydrophobic layer electrospun membranes for heavy metal recovery by air-gap membrane distillation. <i>Desalination</i> , 2018 , 439, 31-45	10.3	29
208	Investigation of UF membranes fouling and potentials as pre-treatment step in desalination and surface water applications. <i>Desalination</i> , 2018 , 432, 115-127	10.3	29
207	Chitosan as natural coagulant in hybrid coagulation-nanofiltration membrane process for water treatment. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 4857-4862	6.8	29
206	Bulk and surface characterization of composite UF membranes Atomic force microscopy, gas adsorption-desorption and liquid displacement techniques. <i>Journal of Membrane Science</i> , 1997 , 128, 7-21	9.6	29
205	Synthesis and characterization of poly(methyl methacrylate)/SiO2 hybrid membrane. <i>Materials Science & Microstructure and Processing</i> , 2007 , 452-453, 422-426	5.3	29
204	The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension. <i>Desalination</i> , 2008 , 220, 273-289	10.3	29
203	An atomic force microscope study of calcium carbonate adhesion to desalination process equipment: effect of anti-scale agent. <i>Desalination</i> , 2008 , 220, 359-370	10.3	29
202	Determination of the effect of cations and cationic polyelectrolytes on the characteristics and final properties of synthetic and activated sludge. <i>Desalination</i> , 2008 , 222, 307-317	10.3	28
201	State of the art review on membrane surface characterisation: Visualisation, verification and quantification of membrane properties. <i>Desalination</i> , 2018 , 434, 12-36	10.3	27
200	Characterization and retention of UF membranes using PEG, HS and polyelectrolytes. <i>Desalination</i> , 2007 . 206. 568-578	10.3	27

(2008-2002)

199	Atomic force microscope study of the rejection of colloids by membrane pores. <i>Desalination</i> , 2002 , 150, 289-295	10.3	27	
198	Current advances in membrane technologies for saline wastewater treatment: A comprehensive review. <i>Desalination</i> , 2021 , 517, 115170	10.3	27	
197	Comparative study of NF and RO membranes in the treatment of produced water II: Toxicity removal efficiency. <i>Desalination</i> , 2013 , 315, 27-32	10.3	26	
196	The relationship between cation ions and polysaccharide on the floc formation of synthetic and activated sludge. <i>Desalination</i> , 2008 , 227, 94-102	10.3	26	
195	The effects of electrostatic interactions on the rejection of colloids by membrane pores lisualisation and quantification. <i>Chemical Engineering Science</i> , 1999 , 54, 369-375	4.4	26	
194	Electrically conductive spacers for self-cleaning membrane surfaces via periodic electrolysis. <i>Desalination</i> , 2017 , 416, 16-23	10.3	25	
193	Atomic force microscopy study of the biofouling and mechanical properties of virgin and industrially fouled reverse osmosis membranes. <i>Desalination</i> , 2017 , 404, 313-321	10.3	25	
192	Adhesion forces between humic acid functionalized colloidal probes and polymer membranes to assess fouling potential. <i>Journal of Membrane Science</i> , 2015 , 484, 35-46	9.6	25	
191	A combined ion exchangellanofiltration process for water desalination: II. Membrane selection. <i>Desalination</i> , 2015 , 363, 51-57	10.3	25	
190	Combined humic substance and heavy metals coagulation, and membrane filtration under saline conditions. <i>Desalination</i> , 2010 , 253, 46-50	10.3	25	
189	Neural network modeling for separation of bentonite in tubular ceramic membranes. <i>Desalination</i> , 2008 , 228, 175-182	10.3	25	
188	Inverted polarity micellar enhanced ultrafiltration for the treatment of heavy metal polluted wastewater. <i>Desalination</i> , 2005 , 185, 185-202	10.3	25	
187	Unlocking the application potential of forward osmosis through integrated/hybrid process. <i>Science of the Total Environment</i> , 2020 , 706, 136047	10.2	25	
186	Performance of PAN-based membranes with graft copolymers bearing hydrophilic PVA and PAN segments in direct ultrafiltration of natural rubber effluent. <i>Desalination</i> , 2015 , 358, 49-60	10.3	24	
185	Hybrid coagulation INF membrane process for brackish water treatment: Effect of antiscalant on water characteristics and membrane fouling. <i>Desalination</i> , 2016 , 393, 144-150	10.3	24	
184	The expansion of gas-fluidised beds in bubbling fluidisation. <i>Chemical Engineering Science</i> , 1997 , 52, 20	81 <u>4-</u> 482	224	
183	Parameters affecting the solubility of carbon dioxide in seawater at the conditions encountered in MSF desalination plants. <i>Desalination</i> , 2008 , 222, 548-571	10.3	24	
182	Characterization of synthetic and activated sludge and conditioning with cationic polyelectrolytes. <i>Desalination</i> , 2008 , 227, 103-110	10.3	24	

181	Effect of Carbon Dioxide in Seawater on Desalination: A Comprehensive Review. <i>Separation and Purification Reviews</i> , 2006 , 35, 223-247	7.3	24
180	Treatment of waste coolants by coagulation and membrane filtration. <i>Chemical Engineering and Processing: Process Intensification</i> , 2004 , 43, 811-821	3.7	24
179	Removal of oil from oil-water emulsion by hybrid coagulation/sand filter as pre-treatment. <i>Journal of Water Process Engineering</i> , 2018 , 26, 17-27	6.7	24
178	Emerging desalination technologies: Current status, challenges and future trends. <i>Desalination</i> , 2021 , 517, 115183	10.3	24
177	Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion. <i>Biotechnology Journal</i> , 2017 , 12, 1600698	5.6	23
176	Flux and salt rejection enhancement of polyvinyl(alcohol) reverse osmosis membranes using nano-zeolite. <i>Desalination</i> , 2019 , 470, 114104	10.3	23
175	Measurements of interactions between particles and charged microbubbles using a combined micro- and macroscopic strategy. <i>Langmuir</i> , 2009 , 25, 4880-5	4	23
174	Characterization of molecularly imprinted composite membranes using an atomic force microscope. <i>Surface and Interface Analysis</i> , 2002 , 33, 672-675	1.5	23
173	Atomic force microscopy study of membranes modified by surface grafting of cationic polyelectrolyte. <i>Desalination</i> , 2005 , 184, 45-55	10.3	23
172	Optimisation of the removal of oil in water emulsion by using ceramic microfiltration membrane and hybrid coagulation/sand filter-MF. <i>Journal of Water Process Engineering</i> , 2019 , 27, 15-23	6.7	23
171	Effect of membrane performance including fouling on cost optimization in brackish water desalination process. <i>Chemical Engineering Research and Design</i> , 2017 , 117, 401-413	5.5	22
170	Analysis of deposition mechanism during ultrafiltration of glycerin-rich solutions. <i>Desalination</i> , 2010 , 261, 313-320	10.3	22
169	Performance of Nanofiltration Membranes in the Treatment of Synthetic and Real Seawater. <i>Separation Science and Technology</i> , 2007 , 42, 493-515	2.5	22
168	Nanofiltration of Magnesium Chloride, Sodium Carbonate, and Calcium Sulphate in Salt Solutions. <i>Separation Science and Technology</i> , 2005 , 40, 3299-3321	2.5	22
167	Superior cross-linking assisted layer by layer modification of forward osmosis membranes for brackish water desalination. <i>Desalination</i> , 2019 , 463, 1-12	10.3	21
166	Novel low-fouling membranes from lab to pilot application in textile wastewater treatment. <i>Journal of Colloid and Interface Science</i> , 2018 , 515, 208-220	9.3	21
165	Laser Doppler Electrophoresis and electro-osmotic flow mapping: A novel methodology for the determination of membrane surface zeta potential. <i>Journal of Membrane Science</i> , 2017 , 523, 524-532	9.6	21
164	A simple model for the prediction of CO2 solubility in H2ONaCl system at geological sequestration conditions. <i>Desalination</i> , 2010 , 260, 114-118	10.3	21

(2005-2007)

163	Modelling the effects of nanofiltration membrane properties on system cost assessment for desalination applications. <i>Desalination</i> , 2007 , 206, 215-225	10.3	21	
162	Ceramic Microfiltration Membranes in Wastewater Treatment: Filtration Behavior, Fouling and Prevention. <i>Membranes</i> , 2020 , 10,	3.8	21	
161	Hybrid coagulation INF membrane processes for brackish water treatment: Effect of pH and salt/calcium concentration. <i>Desalination</i> , 2016 , 390, 25-32	10.3	21	
160	Salinity gradient energy generation by pressure retarded osmosis: A review. <i>Desalination</i> , 2021 , 500, 114841	10.3	21	
159	Investigations of the effect of pore size of ceramic membranes on the pilot-scale removal of oil from oil-water emulsion. <i>Journal of Water Process Engineering</i> , 2019 , 31, 100868	6.7	20	
158	Electrically conductive membranes for in situ fouling detection in membrane distillation using impedance spectroscopy. <i>Journal of Membrane Science</i> , 2018 , 556, 66-72	9.6	20	
157	Feasibility of the direct generation of hydrogen for fuel-cell-powered vehicles by on-board steam reforming of naphtha. <i>Fuel</i> , 2004 , 83, 409-417	7.1	20	
156	The reduction of extractive agent in extractive distillation and auto-extractive distillation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2002 , 41, 673-679	3.7	20	
155	Breaking through the selectivity-permeability tradeoff using nano zeolite-Y for micellar enhanced ultrafiltration dye rejection application. <i>Separation and Purification Technology</i> , 2020 , 242, 116824	8.3	19	
154	The removal of copper in water using manganese activated saturated and unsaturated sand filters. <i>Chemical Engineering Journal</i> , 2012 , 209, 334-344	14.7	19	
153	Selective recognition of organic pollutants in aqueous solutions with composite imprinted membranes. <i>Advances in Colloid and Interface Science</i> , 2010 , 159, 180-8	14.3	19	
152	Effects of heavy metals and polyelectrolytes in humic substance coagulation under saline conditions. <i>Desalination</i> , 2008 , 220, 85-95	10.3	19	
151	Thin layer composite molecularly imprinted membranes for selective separation of cAMP. <i>Separation and Purification Technology</i> , 2003 , 31, 281-289	8.3	19	
150	Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures. <i>Desalination</i> , 2019 , 470, 114118	10.3	18	
149	Membrane distillation Principles, applications, configurations, design, and implementation 2018, 55-106	5	18	
148	Electrically conducting nanofiltration membranes based on networked cellulose and carbon nanostructures. <i>Desalination</i> , 2017 , 406, 60-66	10.3	18	
147	Dual stage PRO process for power generation from different feed resources. <i>Desalination</i> , 2014 , 352, 118-127	10.3	18	
146	Interfacially polymerized nanofiltration membranes: Atomic force microscopy and salt rejection studies. <i>Journal of Applied Polymer Science</i> , 2005 , 96, 605-612	2.9	18	

145	Development of forward osmosis membranes modified by cross-linked layer by layer assembly for brackish water desalination. <i>Journal of Membrane Science</i> , 2019 , 583, 267-277	9.6	17
144	A combined ion exchangeflanofiltration process for water desalination: I. sulphatefilloride ion-exchange in saline solutions. <i>Desalination</i> , 2015 , 363, 44-50	10.3	17
143	Degradation of the antimicrobial triclocarban (TCC) with ozone. <i>Chemical Engineering and Processing: Process Intensification</i> , 2011 , 50, 637-643	3.7	17
142	Microfiltration of micro-sized suspensions of boron-selective resin with PVDF membranes. <i>Desalination</i> , 2017 , 403, 161-171	10.3	16
141	Removal of Highly Concentrated Industrial Grade Leather Dye: Study on Several Flocculation and Sand Filtration Parameters. <i>Separation Science and Technology</i> , 2011 , 46, 883-892	2.5	16
140	A pilot-plant study of the adsorptive micellar flocculation process: Optimum design and operation. <i>Separation and Purification Technology</i> , 2008 , 62, 273-280	8.3	16
139	Investigating the dynamics of segregation of high jetsam binary batch fluidised bed systems. <i>Chemical Engineering and Processing: Process Intensification</i> , 2004 , 43, 187-192	3.7	16
138	Treatment of Landfill Leachate Wastewater by Nanofiltration Membrane. <i>International Journal of Green Energy</i> , 2004 , 1, 251-263	3	16
137	OPERATING PARAMETERS EFFECT ON METHANOLACETONE SEPARATION BY EXTRACTIVE DISTILLATION. Separation Science and Technology, 2002 , 37, 3291-3303	2.5	16
136	Effect of lithium chloride additive on forward osmosis membranes performance. <i>Journal of Water Process Engineering</i> , 2020 , 33, 101049	6.7	16
135	Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review. <i>Membranes</i> , 2020 , 10,	3.8	16
134	Breakthroughs in the fabrication of electrospun-nanofiber-supported thin film composite/nanocomposite membranes for the forward osmosis process: A review. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 50, 1727-1795	11.1	16
133	Interactions between nanoparticles in nanosuspension. <i>Advances in Colloid and Interface Science</i> , 2019 , 272, 102020	14.3	15
132	A combined ion exchangefianofiltration process for water desalination: III. Pilot scale studies. <i>Desalination</i> , 2015 , 363, 58-63	10.3	15
131	Poly(methyl methacrylate)/SIO2 hybrid membranes: Effect of solvents on structural and thermal properties. <i>Journal of Applied Polymer Science</i> , 2006 , 99, 3163-3171	2.9	15
130	Investigating Characteristics of Increasing Molecular Weight Cutoff Polyamide Nanofiltration Membranes Using Solutes Rejection and Atomic Force Microscopy. <i>Separation Science and Technology</i> , 2003 , 38, 1307-1327	2.5	15
129	Enhanced performance of direct contact membrane distillation via selected electrothermal heating of membrane surface. <i>Journal of Membrane Science</i> , 2020 , 610, 118224	9.6	15
128	Numerical modelling of concentration polarisation and cake formation in membrane filtration processes. <i>Desalination</i> , 2015 , 365, 151-159	10.3	14

(2021-2018)

127	Exploring the current state of play for cost-effective water treatment by membranes. <i>Npj Clean Water</i> , 2018 , 1,	11.2	14	
126	Design optimization of high performance dual stage pressure retarded osmosis. <i>Desalination</i> , 2015 , 355, 217-224	10.3	14	
125	The Chemistry of Boron in Water 2015 , 35-63		14	
124	Enhanced Membrane Pre-Treatment Processes using Macromolecular Adsorption and Coagulation in Desalination Plants: A Review. <i>Separation Science and Technology</i> , 2006 , 41, 403-453	2.5	14	
123	An Equilibrium Ion-Exchange Study on the Removal of NH4 + Ion from Aqueous Effluent Using Clinoptilolite. <i>Separation Science and Technology</i> , 2005 , 39, 3639-3663	2.5	14	
122	A study of the tensile properties of liquids in confined spaces using an atomic force microscope. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 2885-290	8 ^{2.4}	14	
121	Analysis and Evaluation of the Liquid Liquid Equilibrium Data of the Extraction of Aromatics from Hydrocarbons by Tetraethylene Glycol. <i>Journal of Chemical & Chemic</i>	92.8	14	
120	Experimental Investigation on the Separation of Bentonite using Ceramic Membranes: Effect of Turbulence Promoters. <i>Separation Science and Technology</i> , 2008 , 43, 286-309	2.5	13	
119	Hydrodynamic studies in both bi-dimensional and three-dimensional bubble columns with a single sparger. <i>Chemical Engineering and Processing: Process Intensification</i> , 2003 , 42, 403-408	3.7	13	
118	Remineralization of desalinated water: Methods and environmental impact. <i>Desalination</i> , 2020 , 496, 114692	10.3	13	
117	Interaction between ballasting agent and flocs in ballasted flocculation for the removal of suspended solids in water. <i>Journal of Water Process Engineering</i> , 2020 , 33, 101028	6.7	13	
116	Comprehensive review of membrane design and synthesis for membrane distillation. <i>Desalination</i> , 2021 , 518, 115168	10.3	13	
115	Analytical and forecasting study for wastewater treatment and water resources in Saudi Arabia. Journal of Water Process Engineering, 2019 , 32, 100915	6.7	12	
114	Optimisation of washing cycle on ultrafiltration membranes used in treatment of metalworking fluids. <i>Desalination</i> , 2003 , 156, 199-207	10.3	12	
113	Use of activated carbon to polish effluent from metalworking treatment plant: comparison of different streams. <i>Desalination</i> , 2005 , 185, 297-306	10.3	12	
112	Heat transfer from vertical inserts in gas-fluidized beds. <i>International Journal of Heat and Mass Transfer</i> , 1996 , 39, 3357-3365	4.9	12	
111	Heat transfer from vertical surfaces to dense gas-fluidized beds. <i>International Journal of Heat and Mass Transfer</i> , 1994 , 37, 2465-2473	4.9	12	
110	Electro-ceramic self-cleaning membranes for biofouling control and prevention in water treatment. <i>Chemical Engineering Journal</i> , 2021 , 415, 128395	14.7	12	

109	Mechanical Characterization of Membranes 2017 , 259-306		11
108	Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review. <i>Journal of Water Process Engineering</i> , 2022 , 45, 102478	6.7	11
107	A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. <i>Journal of Industrial and Engineering Chemistry</i> , 2021 , 101, 78-125	6.3	11
106	The use of factorial design in the analysis of air-gap membrane distillation data. <i>Desalination</i> , 2015 , 367, 90-102	10.3	10
105	Investigation of Kinetics and Mechanism Involved in the Biosorption of Heavy Metals on Activated Sludge. <i>International Journal of Green Energy</i> , 2008 , 5, 313-321	3	10
104	Superhydrophilic and underwater superoleophobic nano zeolite membranes for efficient oil-in-water nanoemulsion separation. <i>Journal of Water Process Engineering</i> , 2021 , 40, 101802	6.7	10
103	Periodic electrolysis technique for in situ fouling control and removal with low-pressure membrane filtration. <i>Desalination</i> , 2018 , 433, 10-24	10.3	9
102	UV-photografting modification of NF membrane surface for NOM wfouling reduction. <i>Desalination and Water Treatment</i> , 2013 , 51, 4855-4861		9
101	Spreading behaviour of aqueous trisiloxane solutions over hydrophobic polymer substrates. <i>Colloid Journal</i> , 2009 , 71, 391-396	1.1	9
100	Removal of NH4 + Ion from NH4Cl Solution Using Clinoptilolite: A Dynamic Study Using a Continuous Packed-Bed Column in Up-Flow Mode. <i>Separation Science and Technology</i> , 2005 , 39, 1347-13	3645	9
99	Membrane distillation process application using a novel ceramic membrane for Brackish water desalination. <i>Desalination</i> , 2021 , 500, 114906	10.3	9
98	Can graphene and graphene oxide materials revolutionise desalination processes?. <i>Desalination</i> , 2021 , 500, 114852	10.3	9
97	The emerging role of 3D printing in water desalination. Science of the Total Environment, 2021, 790, 148	3 238 2	9
96	Dual stage PRO power generation from brackish water brine and wastewater effluent feeds. <i>Desalination</i> , 2016 , 389, 68-77	10.3	8
95	Predicting the structural parameters of integrally skinned porous membranes. <i>Journal of Membrane Science</i> , 2014 , 454, 451-462	9.6	8
94	Manganese Coated Sand for Copper (II) Removal from Water in Batch Mode. <i>Water (Switzerland)</i> , 2013 , 5, 1487-1501	3	8
93	Humic substance coagulation: Artificial neural network simulation. <i>Desalination</i> , 2010 , 253, 153-157	10.3	8
92	Effect of chemical composition on the flocculation dynamics of latex-based synthetic activated sludge. <i>Journal of Hazardous Materials</i> , 2007 , 139, 265-74	12.8	8

(2013-2008)

91	Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation. <i>Journal of Colloid and Interface Science</i> , 2008 , 325, 377-85	9.3	8
90	Solid hold up in gas fluidised beds. <i>Chemical Engineering and Processing: Process Intensification</i> , 2002 , 41, 373-379	3.7	8
89	Volumetric Mass Transfer Coefficient in non-Newtonian Fluids in Spout Fluid Beds. <i>Chemical Engineering and Technology</i> , 2003 , 26, 759-764	2	8
88	Composite Microfiltration Membranes Imprinted with cAMP. <i>Chemical Engineering and Technology</i> , 2003 , 26, 463-468	2	8
87	Transient multi gasBolid reactions in a bubbling fluidized bed. <i>Canadian Journal of Chemical Engineering</i> , 2000 , 78, 433-441	2.3	8
86	Description of membrane fouling characteristics during ultrafiltration of organic foulants contained in sweetwater solutions. <i>Journal of Environmental Chemical Engineering</i> , 2014 , 2, 1243-1251	6.8	7
85	Reversible coagulation of colloidal suspension in shallow potential wells: Direct numerical simulation. <i>Colloid Journal</i> , 2009 , 71, 503-513	1.1	7
84	The express monitoring of organic pollutants in water with composite imprinted membranes. <i>Journal of Membrane Science</i> , 2011 , 377, 151-158	9.6	7
83	The relationship between particle properties and fluidizing velocity during fluidized bed heat transfer. <i>Advanced Powder Technology</i> , 2004 , 15, 583-594	4.6	7
82	(Bio)fouling of Polymeric Membranes: Atomic Force Microscope Study. <i>Engineering in Life Sciences</i> , 2002 , 2, 131	3.4	7
81	Experimental investigation of forward osmosis process for boron removal from water. <i>Journal of Water Process Engineering</i> , 2020 , 38, 101570	6.7	7
80	Polymer membranes IFractal characteristics and determination of roughness scaling exponents. Journal of Membrane Science, 2019 , 570-571, 9-22	9.6	7
79	Hierarchical underwater oleophobic electro-ceramic/carbon nanostructure membranes for highly efficient oil-in-water separation. <i>Separation and Purification Technology</i> , 2021 , 275, 119241	8.3	7
78	Electrically conductive membranes for contemporaneous dye rejection and degradation. <i>Chemical Engineering Journal</i> , 2022 , 428, 131184	14.7	7
77	Ammonium ion removal using activated zeolite and chitosan. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2020 , 15, e2448	1.3	6
76	Atomic Force Microscopy (AFM) 2017 , 115-144		6
75	Statistical analysis of air-gap membrane desalination experimental data: Hypothesis testing. <i>Desalination</i> , 2015 , 362, 117-125	10.3	6
74	Tubular nanofiltration of highly concentrated C.I. Acid Black 210 dye. <i>Water Science and Technology</i> , 2013 , 67, 901-6	2.2	6

73	Surface modification of nanofiltration membrane for reduction of membrane fouling. <i>Desalination and Water Treatment</i> , 2009 , 10, 298-305		6
72	Basic Principles of Atomic Force Microscopy 2009 , 1-30		6
71	Combined Humic Substance and Heavy Metals Agglomeration, and Membrane Filtration under Saline Conditions. <i>Separation Science and Technology</i> , 2008 , 43, 1488-1506	2.5	6
70	Effect of anti-scale agents on the solubility of CO2 in seawater at temperatures of 60 to 90 \square C and pressures of 1 \square bar. <i>Desalination</i> , 2008 , 227, 46-56	10.3	6
69	Comparison of Different Pitch Lengths on Static Promoters for Flux Enhancement in Tubular Ceramic Membrane. <i>Separation Science and Technology</i> , 2007 , 42, 1945-1963	2.5	6
68	Optimized nanofiltration membranes: relevance to economic assessment and process performance. <i>Desalination</i> , 2004 , 165, 243-250	10.3	6
67	Advances in Membrane Distillation Module Configurations <i>Membranes</i> , 2022 , 12,	3.8	6
66	Effect of different filter aids used in cake filtration process on the removal of suspended solids in anaerobically digested palm oil mill effluent (POME)110, 362-370		6
65	Dewatering of POME digestate using lignosulfonate driven forward osmosis. <i>Separation and Purification Technology</i> , 2020 , 235, 116151	8.3	6
64	Nanocrystalline NiWO4-WO3-WO2.9 Composite Strings: Fabrication, Characterization and their Electrocatalytic Performance for Hydrogen Evolution Reaction. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2020 , 51, 1264-1274	2.3	6
63	The hybridization of thermally-driven desalination processes: The state-of-the-art and opportunities. <i>Desalination</i> , 2021 , 506, 115002	10.3	6
62	Effect of Hydrodynamic Operations, Salinity, and Heavy Metals on HA Removal by Microfiltration Ceramic Tubular Membrane. <i>Separation Science and Technology</i> , 2013 , 48, 564-570	2.5	5
61	Membrane Separation Processes 2007 , 351-389		5
60	Optimized nanofiltration membranes: relevance to economic assessment and process performance. <i>Desalination</i> , 2004 , 165, 243-250	10.3	5
59	Nanocomposite nanofiltration membranes: State of play and recent advances. <i>Desalination</i> , 2022 , 524, 115480	10.3	5
58	Electrospun membranes for membrane distillation: The state of play and recent advances. <i>Desalination</i> , 2022 , 526, 115511	10.3	5
57	Innovative and sustainable membrane technology for wastewater treatment and desalination application 2020 , 291-319		5
56	Heat Transfer to Immersed and Boundary Surfaces in Fluidized Beds. <i>Chemical Engineering and Technology</i> , 2002 , 25, 967-973	2	4

(2007-2005)

55	The dependence of solid expansion on bed diameter, particles material, size and distributor in open fluidized beds. <i>Advanced Powder Technology</i> , 2005 , 16, 73-86	4.6	4
54	Design Parameter Effects on Expansion in Fluidized Beds with Inserts. <i>Chemical Engineering and Technology</i> , 2001 , 24, 355-359	2	4
53	Thermodynamic optimization of Multistage Pressure Retarded Osmosis (MPRO) with variable feed pressures for hypersaline solutions. <i>Desalination</i> , 2020 , 477, 114245	10.3	4
52	Green Approaches for Sustainable Development of Liquid Separation Membrane. <i>Membranes</i> , 2021 , 11,	3.8	4
51	Towards a Sustainable Water Supply: Humic Acid Removal Employing Coagulation and Tangential Cross Flow Microfiltration. <i>Water (Switzerland)</i> , 2019 , 11, 2093	3	3
50	Measurement of Particle and Surface Interactions Using Force Microscopy 2009 , 31-80		3
49	Examining predictive correlations for equilibrium concentration profiles in jetsam-rich systems. <i>Advanced Powder Technology</i> , 2004 , 15, 311-320	4.6	3
48	Ab Initio Prediction of the Performance of Membrane Separation Processes. <i>Comprehensive Chemical Kinetics</i> , 1999 , 37, 523-541	0.7	3
47	Lithium recovery from brine: Recent developments and challenges. <i>Desalination</i> , 2022 , 528, 115611	10.3	3
46	Correlating Distributor Effect on Expansion of Particles in Fluidized Beds with Inserts <i>Journal of Chemical Engineering of Japan</i> , 2000 , 33, 901-905	0.8	3
45	Comparison of the intrinsic parameters (A, B and S) of a forward osmosis membrane using pressurized and non-pressurized methods129, 14-23		3
44	Evaluating Fertilizer-Drawn Forward Osmosis Performance in Treating Anaerobic Palm Oil Mill Effluent. <i>Membranes</i> , 2021 , 11,	3.8	3
43	The Use of Modeling for Characterization of Membranes 2017 , 359-378		2
42	Electrokinetic Phenomena for Membrane Charge 2017 , 405-422		2
41	MICROSCOPY Atomic Force Microscopy 2014 , 666-675		2
40	Operating Conditions Corresponding to Optimal Final Properties of Activated Sludge Using the DOE and RSM Techniques. <i>Separation Science and Technology</i> , 2009 , 44, 2041-2066	2.5	2
39	Combined humic substance coagulation and membrane filtration under saline conditions. <i>Desalination and Water Treatment</i> , 2009 , 1, 194-200		2
38	Bed Expansion Extending Correlations for Fluidized Beds with Inserts to Open Fluidized Beds. <i>Chemical Engineering and Technology</i> , 2007 , 30, 655-658	2	2

37	Investigating binary mixtures fluidized using a porous plate. Advanced Powder Technology, 2004, 15, 43	35 414 6	2
36	Porosity in ancient glass from Syria (c. 800 AD) using gas adsorption and atomic force microscopy. <i>Surface and Interface Analysis</i> , 2004 , 36, 1323-1329	1.5	2
35	Non-Newtonian Fluids in Spout-Fluid Beds: Mass Transfer Coefficient at Low Reynolds Numbers. <i>Particulate Science and Technology</i> , 2004 , 22, 391-403	2	2
34	Treatment of metalworking fluids: development of a bioconsortium for the treatment of nanofiltration permeate. <i>Journal of Chemical Technology and Biotechnology</i> , 2005 , 80, 641-648	3.5	2
33	Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. <i>Membranes</i> , 2021 , 11,	3.8	2
32	Basic principles of osmosis and osmotic pressure 2021 , 1-15		2
31	3D printed zeolite-Y for removing heavy metals from water. <i>Journal of Water Process Engineering</i> , 2021 , 42, 102187	6.7	2
30	Development of polyamide forward osmosis membrane for humic acid removal. <i>Desalination and Water Treatment</i> , 2016 , 57, 29113-29117		1
29	Modifications of Polymeric Membranes by Incorporating Metal/Metal Oxide Nanoparticles 2012, 77-11	8	1
28	The Use of Atomic Force Microscopy in Membrane Characterization 2010 , 337-354		1
28	The Use of Atomic Force Microscopy in Membrane Characterization 2010 , 337-354 AFM and Development of (Bio)Fouling-Resistant Membranes 2009 , 139-171		1
		4.6	
27	AFM and Development of (Bio)Fouling-Resistant Membranes 2009 , 139-171 A force balance model of a spouted bed for Darcy and non-Darcy flow in the annulus. <i>Advanced</i>	4.6	1
27 26	AFM and Development of (Bio)Fouling-Resistant Membranes 2009, 139-171 A force balance model of a spouted bed for Darcy and non-Darcy flow in the annulus. <i>Advanced Powder Technology</i> , 2005, 16, 35-48 Characterisation and Nanomechanical Properties of Ink-Jet Media Using Atomic Force Microscopy.		1
27 26 25	AFM and Development of (Bio)Fouling-Resistant Membranes 2009, 139-171 A force balance model of a spouted bed for Darcy and non-Darcy flow in the annulus. <i>Advanced Powder Technology</i> , 2005, 16, 35-48 Characterisation and Nanomechanical Properties of Ink-Jet Media Using Atomic Force Microscopy. <i>International Journal of Green Energy</i> , 2006, 3, 423-439 Concentration of potassium cations in the permeate solution in the presence of N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer using dead-end nano-or	3	1 1
27 26 25 24	AFM and Development of (Bio)Fouling-Resistant Membranes 2009, 139-171 A force balance model of a spouted bed for Darcy and non-Darcy flow in the annulus. Advanced Powder Technology, 2005, 16, 35-48 Characterisation and Nanomechanical Properties of Ink-Jet Media Using Atomic Force Microscopy. International Journal of Green Energy, 2006, 3, 423-439 Concentration of potassium cations in the permeate solution in the presence of N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer using dead-end nano-or ultrafiltration. Colloid Journal, 2006, 68, 211-216 Experimental Investigation on the Removal of Toner Particles from Laser-Printed Office Waste	3	1 1 1
27 26 25 24 23	AFM and Development of (Bio)Fouling-Resistant Membranes 2009, 139-171 A force balance model of a spouted bed for Darcy and non-Darcy flow in the annulus. Advanced Powder Technology, 2005, 16, 35-48 Characterisation and Nanomechanical Properties of Ink-Jet Media Using Atomic Force Microscopy. International Journal of Green Energy, 2006, 3, 423-439 Concentration of potassium cations in the permeate solution in the presence of N,N-dimethyl-N-2-propenyl-2-propen-1-aminium chloride homopolymer using dead-end nano-or ultrafiltration. Colloid Journal, 2006, 68, 211-216 Experimental Investigation on the Removal of Toner Particles from Laser-Printed Office Waste Papers. International Journal of Green Energy, 2004, 1, 115-122	3 1.1 3	1 1 1 1 1

(2021-2022)

19	Natural and recycled materials for sustainable membrane modification: Recent trends and prospects <i>Science of the Total Environment</i> , 2022 , 156014	10.2	1
18	3D printed electrically conductive interdigitated spacer on ultrafiltration membrane for electrolytic cleaning and chlorination. <i>Journal of Applied Polymer Science</i> ,52292	2.9	O
17	Development of an axisymmetric parallel solution algorithm for membrane separation process. <i>Desalination</i> , 2019 , 471, 114127	10.3	
16	Membrane Modules for Large-Scale Salinity Gradient Process Applications 2018 , 223-242		
15	Mass Transport in Porous Liquid Phase Membranes 2017 , 337-358		
14	Feed Solution Characterization 2017 , 379-404		
13	Membrane Characterization by Atomic Force Microscopy 2013 , 1		
12	Investigating Membranes and Membrane Processes with Atomic Force Microscopy 2009 , 107-138		
11	Combined Macromolecular Adsorption and Coagulation for Improvement of Membrane Separation in Water Treatment 2012 , 231-265		
10	Atomic Force Microscopy Investigations of Membranes and Membrane Processes105-125		
9	MICROSCOPY Atomic Force Microscopy 1999 , 1418-1425		
8	A Study of Cavitation Phenomena Using an Atomic Force Microscope 2002 , 243-254		
7	Adsorption of Ammonia Nitrogen by using Jackfruit (Artocarpus heterophyllus) Seeds: Batch and Fixed-bed Column Studies. <i>Current Environmental Engineering</i> , 2018 , 5, 202-210	1.6	
6	Atomic-force microscopy investigations of filtration membranes 2017 , 189-212		
5	Quantification of Particle B ubble Interactions Using Atomic Force Microscopy 2009 , 81-105		
4	Development of Antifouling Properties and Performance of Nanofiltration Membranes by Interfacial Polymerization and Photografting Techniques 2012 , 119-158		
3	Polyester Thin Film Composite Nanofiltration Membranes Prepared by Interfacial Polymerization Technique for Removal of Humic Acid 2013 , 111-117		
2	Application of PRO process for seawater and wastewater treatment: assessment of membrane performance 2021 , 203-244		

Principle and theoretical background of pressure-retarded osmosis process **2021**, 187-202