Ke Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/138214/publications.pdf

Version: 2024-02-01

		57631	5	56606	
89	7,345	44		83	
papers	citations	h-index		g-index	
100	100	100		8707	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Spatiotemporal changes of precipitation extremes in Bangladesh during 1987–2017 and their connections with climate changes, climate oscillations, and monsoon dynamics. Global and Planetary Change, 2022, 208, 103712.	1.6	17
2	An integrated flood risk assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard vulnerability analysis. Environmental Modelling and Software, 2022, 148, 105279.	1.9	65
3	Evaluating performance dependency of a geomorphologic instantaneous unit hydrograph-based hydrological model on DEM resolution. Water Science and Engineering, 2022, 15, 179-188.	1.4	4
4	Assimilation of surface soil moisture jointly retrieved by multiple microwave satellites into the WRF-Hydro model in ungauged regions: Towards a robust flood simulation and forecasting. Environmental Modelling and Software, 2022, 154, 105421.	1.9	2
5	Climatology and changes in hourly precipitation extremes over China during 1970–2018. Science of the Total Environment, 2022, 839, 156297.	3.9	13
6	Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method. Journal of Hydrology, 2021, 592, 125814.	2.3	30
7	Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Science of the Total Environment, 2021, 760, 144244.	3.9	113
8	A Comprehensive Evaluation of Five Evapotranspiration Datasets Based on Ground and GRACE Satellite Observations: Implications for Improvement of Evapotranspiration Retrieval Algorithm. Remote Sensing, 2021, 13, 2414.	1.8	54
9	Spatiotemporal characteristics and attribution of dry/wet conditions in the Weihe River Basin within a typical monsoon transition zone of East Asia over the recent 547 years. Environmental Modelling and Software, 2021, 143, 105116.	1.9	58
10	Quantifying natural recharge characteristics of shallow aquifers in groundwater overexploitation zone of North China. Water Science and Engineering, 2021, 14, 184-192.	1.4	11
11	Improving the flood prediction capability of the Xin'anjiang model by formulating a new physics-based routing framework and a key routing parameter estimation method. Journal of Hydrology, 2021, 603, 126867.	2.3	17
12	Exploring the utility of radar and satellite-sensed precipitation and their dynamic bias correction for integrated prediction of flood and landslide hazards. Journal of Hydrology, 2021, 603, 126964.	2.3	66
13	Evaporation Processes and Changes Over the Northern Regions. , 2021, , 101-131.		2
14	Xin'anjiang Nested Experimental Watershed (XAJ-NEW) for Understanding Multiscale Water Cycle: Scientific Objectives and Experimental Design. Engineering, 2021, , .	3.2	1
15	Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment. Environmental Modelling and Software, 2020, 124, 104607.	1.9	87
16	A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. Journal of Hydrology, 2020, 590, 125440.	2.3	120
17	A New Runoff Routing Scheme for Xin'anjiang Model and Its Routing Parameters Estimation Based on Geographical Information. Water (Switzerland), 2020, 12, 3429.	1.2	4
18	Evaluation of Flood Prediction Capability of the WRF-Hydro Model Based on Multiple Forcing Scenarios. Water (Switzerland), 2020, 12, 874.	1.2	16

#	Article	IF	CITATIONS
19	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	8.1	152
20	A comprehensive assessment framework for quantifying climatic and anthropogenic contributions to streamflow changes: A case study in a typical semi-arid North China basin. Environmental Modelling and Software, 2020, 128, 104704.	1.9	69
21	GA-PIC: An improved Green-Ampt rainfall-runoff model with a physically based infiltration distribution curve for semi-arid basins. Journal of Hydrology, 2020, 586, 124900.	2.3	30
22	Analysis and Projection of Land-Use/Land-Cover Dynamics through Scenario-Based Simulations Using the CA-Markov Model: A Case Study in Guanting Reservoir Basin, China. Sustainability, 2020, 12, 3747.	1.6	32
23	Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data. Hydrology and Earth System Sciences, 2019, 23, 2647-2663.	1.9	66
24	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 1: Model description. Geoscientific Model Development, 2019, 12, 4309-4346.	1.3	62
25	The Sensitivity of North American Terrestrial Carbon Fluxes to Spatial and Temporal Variation in Soil Moisture: An Analysis Using Radarâ€Derived Estimates of Rootâ€Zone Soil Moisture. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3208-3231.	1.3	111
26	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America. Geoscientific Model Development, 2019, 12, 4347-4374.	1.3	29
27	Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across China. Water Science and Engineering, 2019, 12, 85-97.	1.4	49
28	Evaluation of flood prediction capability of the distributed Gridâ \in Xinanjiang model driven by weather research and forecasting precipitation. Journal of Flood Risk Management, 2019, 12, .	1.6	24
29	Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. Journal of Hydrology, 2019, 574, 903-914.	2.3	104
30	Applicability assessment of the CASCade Two Dimensional SEDiment (CASC2Dâ€6ED) distributed hydrological model for flood forecasting across four typical medium and small watersheds in China. Journal of Flood Risk Management, 2019, 12, .	1.6	32
31	Characteristics and influencing factors of rainfall-induced landslide and debris flow hazards in Shaanxi Province, China. Natural Hazards and Earth System Sciences, 2019, 19, 93-105.	1.5	119
32	Flood hazard mapping and assessment in data-scarce Nyaungdon area, Myanmar. PLoS ONE, 2019, 14, e0224558.	1.1	44
33	Projections of Future Climate Change in Singapore Based on a Multi-Site Multivariate Downscaling Approach. Water (Switzerland), 2019, 11, 2300.	1.2	15
34	Multiple hydrological models comparison and an improved Bayesian model averaging approach for ensemble prediction over semi-humid regions. Stochastic Environmental Research and Risk Assessment, 2019, 33, 217-238.	1.9	48
35	A comprehensive flash flood defense system in China: overview, achievements, and outlook. Natural Hazards, 2018, 92, 727-740.	1.6	26
36	Geographically weighted regression based methods for merging satellite and gauge precipitation. Journal of Hydrology, 2018, 558, 275-289.	2.3	181

#	Article	lF	CITATIONS
37	A probabilistic method for streamflow projection and associated uncertainty analysis in a data sparse alpine region. Global and Planetary Change, 2018, 165, 100-113.	1.6	26
38	Analysis of flash flood disaster characteristics in China from 2011 to 2015. Natural Hazards, 2018, 90, 407-420.	1.6	92
39	Application and Sensitivity Analysis of Artificial Neural Network for Prediction of Chemical Oxygen Demand. Water Resources Management, 2018, 32, 273-283.	1.9	30
40	Simulating canopy conductance of the Haloxylon ammodendron shrubland in an arid inland river basin of northwest China. Agricultural and Forest Meteorology, 2018, 249, 22-34.	1.9	31
41	Characteristics of Urban Waterlogging and Flash Flood Hazards and Their Integrated Preventive Measures: Case Study in Fuzhou, China. Journal of Sustainable Water in the Built Environment, 2018, 4,	0.9	11
42	Analysis of drought and vulnerability in the North Darfur region of Sudan. Land Degradation and Development, 2018, 29, 4424-4438.	1.8	29
43	Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agricultural and Forest Meteorology, 2018, 263, 118-129.	1.9	111
44	Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytologist, 2018, 219, 914-931.	3.5	64
45	Land cover change explains the increasing discharge of the Paran $ ilde{A}_i$ River. Regional Environmental Change, 2018, 18, 1871-1881.	1.4	32
46	Bias orrected data sets of climate model outputs at uniform space–time resolution for land surface modelling over Amazonia. International Journal of Climatology, 2017, 37, 621-636.	1.5	17
47	Evaluation of the TRMM multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin, China. Journal of Hydrology, 2017, 549, 313-325.	2.3	52
48	Application of a developed distributed hydrological model based on the mixed runoff generation model and 2D kinematic wave flow routing model for better flood forecasting. Atmospheric Science Letters, 2017, 18, 284-293.	0.8	17
49	On simulation improvement of the <scp>N</scp> oah_ <scp>LSM</scp> by coupling with a hydrological model using a doubleâ€excess runoff production scheme in the <scp>GRAPES</scp> _ <scp>M</scp> eso model. Meteorological Applications, 2017, 24, 512-520.	0.9	3
50	Runoff sensitivity over Asia: Role of climate variables and initial soil conditions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2218-2238.	1.2	4
51	Refining a Distributed Linear Reservoir Routing Method to Improve Performance of the CREST Model. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	44
52	Hydrometeorological Applications: Severe Weather Precipitation Detection, Estimation, and Forecast. Advances in Meteorology, 2017, 2017, 1-2.	0.6	1
53	Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrology and Earth System Sciences, 2017, 21, 1455-1475.	1.9	69
54	Estimation of Active Stream Network Length in a Hilly Headwater Catchment Using Recession Flow Analysis. Water (Switzerland), 2017, 9, 348.	1.2	6

#	Article	IF	Citations
55	iCRESTRIGRS: a coupled modeling system for cascading flood–landslide disaster forecasting. Hydrology and Earth System Sciences, 2016, 20, 5035-5048.	1.9	47
56	Advances in Remote Sensing and Modeling of Terrestrial Hydrometeorological Processes and Extremes. Advances in Meteorology, 2016, 2016, 1-3.	0.6	0
57	Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. International Journal of Sediment Research, 2016, 31, 149-158.	1.8	65
58	GDBC: A tool for generating global-scale distributed basin morphometry. Environmental Modelling and Software, 2016, 83, 212-223.	1.9	10
59	Application and comparison of coaxial correlation diagram and hydrological model for reconstructing flood series under human disturbance. Journal of Mountain Science, 2016, 13, 1245-1264.	0.8	10
60	Changing Amazon biomass and the role of atmospheric CO ₂ concentration, climate, and land use. Global Biogeochemical Cycles, 2016, 30, 18-39.	1.9	32
61	Applying a statistical method to streamflow reduction caused by underground mining for coal in the Kuye River basin. Science China Technological Sciences, 2016, 59, 1911-1920.	2.0	8
62	A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 2016, 3, 834-853.	2.8	380
63	Development of a coupled hydrological-geotechnical framework for rainfall-induced landslides prediction. Journal of Hydrology, 2016, 543, 395-405.	2.3	46
64	Inside Cover Image, Volume 3, Issue 6. Wiley Interdisciplinary Reviews: Water, 2016, 3, ii.	2.8	0
65	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
66	Large-scale climate patterns and precipitation in an arid endorheic region: linkage and underlying mechanism. Environmental Research Letters, 2016, 11, 044006.	2.2	20
67	Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 793-797.	3.3	161
68	New Multisite Cascading Calibration Approach for Hydrological Models: Case Study in the Red River Basin Using the VIC Model. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	0.8	47
69	Evapotranspiration Mapping Utilizing Remote Sensing Data. , 2016, , 17-35.		0
70	An Advanced Distributed Hydrologic Framework. , 2016, , 127-138.		0
71	Water balanceâ€based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous <scp>U</scp> nited <scp>S</scp> tates. Water Resources Research, 2015, 51, 6485-6499.	1.7	79
72	Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Scientific Reports, 2015, 5, 15956.	1.6	265

#	Article	IF	Citations
73	The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric <scp>CO</scp> _{2,} and land use. Global Change Biology, 2015, 21, 2569-2587.	4.2	97
74	Predictability of a Physically Based Model for Rainfall-induced Shallow Landslides: Model Development and Case Studies., 2015, , 165-178.		6
75	Improving the flood prediction capability of the Xinanjiang model in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph. Journal of Hydrology, 2014, 517, 1035-1048.	2.3	94
76	Sensitivity of inferred climate model skill to evaluation decisions: a case study using CMIP5 evapotranspiration. Environmental Research Letters, 2013, 8, 024028.	2.2	50
77	A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. Journal of Hydrology, 2012, 468-469, 47-62.	2.3	67
78	Changing freezeâ€thaw seasons in northern high latitudes and associated influences on evapotranspiration. Hydrological Processes, 2011, 25, 4142-4151.	1.1	62
79	Satellite Microwave Remote Sensing of Daily Land Surface Air Temperature Minima and Maxima From AMSR-E. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 111-123.	2.3	91
80	Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467, 951-954.	13.7	1,771
81	A continuous satelliteâ€derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research, 2010, 46, .	1.7	444
82	Analysis of the Arctic System for Freshwater Cycle Intensification: Observations and Expectations. Journal of Climate, 2010, 23, 5715-5737.	1.2	303
83	Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. Journal of Hydrology, 2009, 379, 92-110.	2.3	212
84	A Satellite Approach to Estimate Land–Atmosphere \$hbox{CO}_{2}\$ Exchange for Boreal and Arctic Biomes Using MODIS and AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 569-587.	2.7	58
85	Satelliteâ€based model detection of recent climateâ€driven changes in northern highâ€latitude vegetation productivity. Journal of Geophysical Research, 2008, 113, .	3.3	99
86	Comparison of Three GIS-Based Hydrological Models. Journal of Hydrologic Engineering - ASCE, 2008, 13, 364-370.	0.8	50
87	Sensitivity of pan-Arctic terrestrial net primary productivity simulations to daily surface meteorology from NCEP-NCAR and ERA-40 reanalyses. Journal of Geophysical Research, 2007, 112, .	3.3	23
88	Northern high″atitude ecosystems respond to climate change. Eos, 2007, 88, 333-335.	0.1	92
89	Impacts of largeâ€scale oscillations on panâ€Arctic terrestrial net primary production. Geophysical Research Letters, 2007, 34, .	1.5	27