
Jungjin Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381968/publications.pdf Version: 2024-02-01

IUNCUN DADE

#	Article	IF	CITATIONS
1	The use of elemental sulfur as an alternative feedstock for polymeric materials. Nature Chemistry, 2013, 5, 518-524.	6.6	1,046
2	Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li–S Battery. Advanced Energy Materials, 2017, 7, 1602567.	10.2	309
3	Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li–S Batteries. ACS Macro Letters, 2014, 3, 229-232.	2.3	279
4	The Importance of Confined Sulfur Nanodomains and Adjoining Electron Conductive Pathways in Subreaction Regimes of Liâ \in S Batteries. Advanced Energy Materials, 2017, 7, 1700074.	10.2	127
5	Copolymerization of Polythiophene and Sulfur To Improve the Electrochemical Performance in Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 7011-7017.	3.2	120
6	Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano Today, 2018, 18, 35-64.	6.2	110
7	Elemental Sulfur and Molybdenum Disulfide Composites for Li–S Batteries with Long Cycle Life and High-Rate Capability. ACS Applied Materials & Interfaces, 2016, 8, 13437-13448.	4.0	108
8	Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Materials, 2016, 8, e272-e272.	3.8	105
9	Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nature Materials, 2021, 20, 991-999.	13.3	101
10	Engineering Titanium Dioxide Nanostructures for Enhanced Lithium-Ion Storage. Journal of the American Chemical Society, 2018, 140, 16676-16684.	6.6	85
11	Role and Potential of Metal Sulfide Catalysts in Lithiumâ€6ulfur Battery Applications. ChemCatChem, 2019, 11, 2373-2387.	1.8	54
12	Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 13874-13895.	5.2	54
13	Marginal Magnesium Doping for Highâ€Performance Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902278.	10.2	47
14	Insights on the delithiation/lithiation reactions of Li Mn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy, 2017, 39, 371-379.	8.2	41
15	Conformal Polymeric Multilayer Coatings on Sulfur Cathodes via the Layer-by-Layer Deposition for High Capacity Retention in Li–S Batteries. ACS Macro Letters, 2016, 5, 471-475.	2.3	31
16	Synchrotron-based x-ray absorption spectroscopy for the electronic structure of Li x Mn 0.8 Fe 0.2 PO 4 mesocrystal in Li + batteries. Nano Energy, 2017, 31, 495-503.	8.2	28
17	Si7Ti4Ni4 as a buffer material for Si and its electrochemical study for lithium ion batteries. Journal of Power Sources, 2014, 246, 729-735.	4.0	25
18	Nitrogen-Doped Graphene Quantum Dots: Sulfiphilic Additives for the High-Performance Li–S Cells. ACS Applied Energy Materials, 2021, 4, 3518-3525.	2.5	21

Jungjin Park

#	Article	IF	CITATIONS
19	An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale, 2015, 7, 13249-13255.	2.8	20
20	Electrochemical Promotion of Oxygen Reduction on Gold with Aluminum Phosphate Overlayer. Journal of Physical Chemistry C, 2011, 115, 7092-7096.	1.5	18
21	Design considerations for lithium–sulfur batteries: mass transport of lithium polysulfides. Nanoscale, 2020, 12, 15466-15472.	2.8	14
22	Methanol oxidation in nanostructured platinum/cerium-phosphate thin films. Current Applied Physics, 2011, 11, S2-S5.	1.1	12
23	The COSMIC Imaging Beamline at the Advanced Light Source: a new facility for spectro-microscopy of nano-materials. Microscopy and Microanalysis, 2018, 24, 8-11.	0.2	12
24	Enhancing the of Performance of Lithium‣ulfur Batteries through Electrochemical Impregnation of Sulfur in Hierarchical Mesoporous Carbon Nanoparticles. ChemElectroChem, 2020, 7, 3653-3655.	1.7	10
25	Understandings about functionalized porous carbon via scanning transmission x-ray microscopy (STXM) for high sulfur utilization in lithium-sulfur batteries. Nano Energy, 2022, 100, 107446.	8.2	7
26	The Electrochemical Analysis using Critical Parameters in Li–S Battery. Bulletin of the Korean Chemical Society, 2015, 36, 2596-2600.	1.0	6
27	Effects of Photochemical Oxidation of the Carbonaceous Additives on Li–S Cell Performance. ACS Applied Materials & Interfaces, 2021, 13, 41517-41523.	4.0	3
28	Lithium‣ulfur Batteries: Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li–S Battery (Adv. Energy Mater. 11/2017). Advanced Energy Materials, 2017, 7, .	10.2	2
29	Lithium‣ulfur Batteries: The Importance of Confined Sulfur Nanodomains and Adjoining Electron Conductive Pathways in Subreaction Regimes of Li‣ Batteries (Adv. Energy Mater. 19/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
30	Graphene Quantum Dots (GQDs) Surface Functionalization to Enhance the Cycle Stability and Electron Path on Lithium Sulphur Batteries. ECS Meeting Abstracts, 2014, , .	0.0	0
31	Introduction of Coherent X-Ray Diffraction Microscopy to Analyze Manganese-Based Olivine Cathode Materials in Lithium-Ion Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
32	Communication—Polysulfide-Induced Chemical Capacity Loss in Li-S Batteries. Journal of the Electrochemical Society, 0, , .	1.3	0