Dhrubajyoti Bhattacharjya

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/1381894/dhrubajyoti-bhattacharjya-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34 2,434 21 37 g-index

37 ext. papers ext. citations 6.9 avg, IF 5.37 L-index

#	Paper	IF	Citations
34	Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. <i>Journal of the American Chemical Society</i> , 2012 , 134, 16127-30	16.4	784
33	Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. <i>Journal of Power Sources</i> , 2014 , 262, 224-231	8.9	213
32	Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. <i>Langmuir</i> , 2014 , 30, 318-24	4	180
31	Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction. <i>Carbon</i> , 2014 , 67, 736-743	10.4	127
30	Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction. <i>ChemSusChem</i> , 2014 , 7, 1755-63	8.3	123
29	High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. <i>Journal of Power Sources</i> , 2013 , 244, 799-805	8.9	114
28	Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18001-18	8009	103
27	1-Dimensional porous Fe2O3 nanorods as high performance electrode material for supercapacitors. <i>RSC Advances</i> , 2013 , 3, 25120	3.7	83
26	A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. <i>Fuel</i> , 2020 , 282, 118796	7.1	83
25	Functionalized Agarose Self-Healing Ionogels Suitable for Supercapacitors. <i>ChemSusChem</i> , 2015 , 8, 329	48393	78
24	Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material. <i>Langmuir</i> , 2013 , 29, 6754-61	4	69
23	Rectangular MgO microsheets with strong catalytic activity. <i>Materials Chemistry and Physics</i> , 2011 , 129, 853-861	4.4	69
22	High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. <i>Chemical Communications</i> , 2015 , 51, 13350-3	5.8	64
21	Synthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 11472	13	45
20	Fast and controllable reduction of graphene oxide by low-cost CO2 laser for supercapacitor application. <i>Applied Surface Science</i> , 2018 , 462, 353-361	6.7	40
19	A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies. <i>Energy and Environmental Science</i> , 2020 , 13, 2441-2449	35.4	39
18	Nitrogen-Doped Ordered Mesoporous Carbon with Different Morphologies for the Oxygen Reduction Reaction: Effect of Iron Species and Synergy of Textural Properties. <i>ChemCatChem</i> , 2015 , 7, 2882-2890	5.2	29

LIST OF PUBLICATIONS

17	Green fabrication of 3-dimensional flower-shaped zinc glycerolate and ZnO microstructures for p-nitrophenol sensing. <i>RSC Advances</i> , 2015 , 5, 37721-37728	3.7	28
16	Graphene nanoplatelets with selectively functionalized edges as electrode material for electrochemical energy storage. <i>Langmuir</i> , 2015 , 31, 5676-83	4	23
15	Controlled growth of polyaniline fractals on HOPG through potentiodynamic electropolymerization. <i>Langmuir</i> , 2012 , 28, 5893-9	4	23
14	High-performance quaternary PtRuIrNi electrocatalysts with hierarchical nanostructured carbon support. <i>Journal of Catalysis</i> , 2013 , 306, 133-145	7.3	21
13	Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention. <i>Scientific Reports</i> , 2016 , 6, 31555	4.9	16
12	Thermal decomposition of hydromagnesite. <i>Journal of Thermal Analysis and Calorimetry</i> , 2012 , 107, 439	-445	16
11	A highly efficient carbon-supported Pt electrocatalyst prepared by 🛘 Irradiation for cathodic oxygen reduction. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 1688-1697	6.7	14
10	Facile Synthesis of Hexagonal NiCo2O4 Nanoplates as High-Performance Anode Material for Li-Ion Batteries. <i>Bulletin of the Korean Chemical Society</i> , 2015 , 36, 2330-2336	1.2	14
9	Study of electrode processing and cell assembly for the optimized performance of supercapacitor in pouch cell configuration. <i>Journal of Power Sources</i> , 2019 , 439, 227106	8.9	9
8	Robust NiCo2O4/Superactivated Carbon Aqueous Supercapacitor with High Power Density and Stable Cyclability. <i>ChemElectroChem</i> , 2019 , 6, 2536-2545	4.3	6
7	Fabrication of high-performance dual carbon Li-ion hybrid capacitor: mass balancing approach to improve the energy-power density and cycle life. <i>Scientific Reports</i> , 2020 , 10, 10842	4.9	6
6	N-Carbon from Waste Tea as Efficient Anode Electrode Material in Lithium Ion Batteries. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 1838-1846	1.3	3
5	Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. Journal of Energy Storage, 2022 , 52, 104938	7.8	2
4	Fabrication and Magnetic Properties of CoNiAl Ferromagnetic Shape Memory Alloy Thin Films. Materials Science Forum, 2009, 635, 167-172	0.4	1
3	Coal-Derived Activated Carbon for Electrochemical Energy Storage: Status on Supercapacitor, Li-Ion Battery, and LiB Battery Applications. <i>Energy & Energy &</i>	4.1	1
2	Development of a Li-Ion Capacitor Pouch Cell Prototype by Means of a Low-Cost, Air-Stable, Solution Processable Fabrication Method. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 110544	3.9	0
1	(Invited) A Transversal Low-Cost Pre-Lithiation Strategy Enabling Ultrafast and Stable Lithium Ion Capacitors. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 647-647	0	