
Dhrubajyoti Bhattacharjya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1381894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the American Chemical Society, 2012, 134, 16127-16130.	13.7	866
2	Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. Journal of Power Sources, 2014, 262, 224-231.	7.8	259
3	Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries. Langmuir, 2014, 30, 318-324.	3.5	225
4	A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel, 2020, 282, 118796.	6.4	216
5	Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction. Carbon, 2014, 67, 736-743.	10.3	141
6	Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. Journal of Materials Chemistry A, 2015, 3, 18001-18009.	10.3	141
7	Seaweedâ€Derived Heteroatomâ€Doped Highly Porous Carbon as an Electrocatalyst for the Oxygen Reduction Reaction. ChemSusChem, 2014, 7, 1755-1763.	6.8	136
8	High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. Journal of Power Sources, 2013, 244, 799-805.	7.8	126
9	Functionalized Agarose Selfâ€Healing Ionogels Suitable for Supercapacitors. ChemSusChem, 2015, 8, 3294-3303.	6.8	103
10	1-Dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors. RSC Advances, 2013, 3, 25120.	3.6	92
11	Rectangular MgO microsheets with strong catalytic activity. Materials Chemistry and Physics, 2011, 129, 853-861.	4.0	87
12	Morphology-Dependent Li Storage Performance of Ordered Mesoporous Carbon as Anode Material. Langmuir, 2013, 29, 6754-6761.	3.5	72
13	High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. Chemical Communications, 2015, 51, 13350-13353.	4.1	70
14	A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies. Energy and Environmental Science, 2020, 13, 2441-2449.	30.8	67
15	Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials. Journal of Energy Storage, 2022, 52, 104938.	8.1	63
16	Synthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine. Journal of Materials Chemistry A, 2014, 2, 11472.	10.3	51
17	Fast and controllable reduction of graphene oxide by low-cost CO2 laser for supercapacitor application. Applied Surface Science, 2018, 462, 353-361.	6.1	51
18	Green fabrication of 3-dimensional flower-shaped zinc glycerolate and ZnO microstructures for p-nitrophenol sensing. RSC Advances, 2015, 5, 37721-37728.	3.6	37

#	Article	IF	CITATIONS
19	Coal-Derived Activated Carbon for Electrochemical Energy Storage: Status on Supercapacitor, Li-Ion Battery, and Li–S Battery Applications. Energy & Fuels, 2021, 35, 18285-18307.	5.1	37
20	Graphene Nanoplatelets with Selectively Functionalized Edges as Electrode Material for Electrochemical Energy Storage. Langmuir, 2015, 31, 5676-5683.	3.5	33
21	Nitrogenâ€Doped Ordered Mesoporous Carbon with Different Morphologies for the Oxygen Reduction Reaction: Effect of Iron Species and Synergy of Textural Properties. ChemCatChem, 2015, 7, 2882-2890.	3.7	32
22	Controlled Growth of Polyaniline Fractals on HOPG through Potentiodynamic Electropolymerization. Langmuir, 2012, 28, 5893-5899.	3.5	30
23	Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention. Scientific Reports, 2016, 6, 31555.	3.3	26
24	High-performance quaternary PtRuIrNi electrocatalysts with hierarchical nanostructured carbon support. Journal of Catalysis, 2013, 306, 133-145.	6.2	24
25	Thermal decomposition of hydromagnesite. Journal of Thermal Analysis and Calorimetry, 2012, 107, 439-445.	3.6	23
26	Fabrication of high-performance dual carbon Li-ion hybrid capacitor: mass balancing approach to improve the energy-power density and cycle life. Scientific Reports, 2020, 10, 10842.	3.3	20
27	Study of electrode processing and cell assembly for the optimized performance of supercapacitor in pouch cell configuration. Journal of Power Sources, 2019, 439, 227106.	7.8	19
28	Facile Synthesis of Hexagonal <scp>NiCo₂O₄</scp> Nanoplates as Highâ€Performance Anode Material for Liâ€ion Batteries. Bulletin of the Korean Chemical Society, 2015, 36, 2330-2336.	1.9	18
29	Graphene/Graphene Derivatives from Coal, Biomass, and Wastes: Synthesis, Energy Applications, and Perspectives. Energy & Fuels, 2022, 36, 12847-12874.	5.1	17
30	A highly efficient carbon-supported Pt electrocatalyst prepared by γ-irradiation for cathodic oxygen reduction. International Journal of Hydrogen Energy, 2014, 39, 1688-1697.	7.1	16
31	Robust NiCo ₂ O ₄ /Superactivated Carbon Aqueous Supercapacitor with High Power Density and Stable Cyclability. ChemElectroChem, 2019, 6, 2536-2545.	3.4	11
32	Development of a Li-Ion Capacitor Pouch Cell Prototype by Means of a Low-Cost, Air-Stable, Solution Processable Fabrication Method. Journal of the Electrochemical Society, 2021, 168, 110544.	2.9	8
33	N-Carbon from Waste Tea as Efficient Anode Electrode Material in Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2017, 17, 1838-1846.	0.9	3
34	Fabrication and Magnetic Properties of CoNiAl Ferromagnetic Shape Memory Alloy Thin Films. Materials Science Forum, 0, 635, 167-172.	0.3	2
35	(Invited) A Transversal Low-Cost Pre-Lithiation Strategy Enabling Ultrafast and Stable Lithium Ion Capacitors. ECS Meeting Abstracts, 2020, MA2020-02, 647-647.	0.0	0